Suppr超能文献

基于组件的集成堆叠卷积神经网络对部分遮挡面部的表情识别

Facial expression recognition on partially occluded faces using component based ensemble stacked CNN.

作者信息

Bellamkonda Sivaiah, Gopalan N P, Mala C, Settipalli Lavanya

机构信息

Department of Computer Applications, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015 India.

Department of Computer Science and Engineering, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015 India.

出版信息

Cogn Neurodyn. 2023 Aug;17(4):985-1008. doi: 10.1007/s11571-022-09879-y. Epub 2022 Sep 17.

Abstract

Facial Expression Recognition (FER) is the basis for many applications including human-computer interaction and surveillance. While developing such applications, it is imperative to understand human emotions for better interaction with machines. Among many FER models developed so far, Ensemble Stacked Convolution Neural Networks (ES-CNN) showed an empirical impact in improving the performance of FER on static images. However, the existing ES-CNN based FER models trained with features extracted from the entire face, are unable to address the issues of ambient parameters such as pose, illumination, occlusions. To mitigate the problem of reduced performance of ES-CNN on partially occluded faces, a Component based ES-CNN (CES-CNN) is proposed. CES-CNN applies ES-CNN on action units of individual face components such as eyes, eyebrows, nose, cheek, mouth, and glabella as one subnet of the network. Max-Voting based ensemble classifier is used to ensemble the decisions of the subnets in order to obtain the optimized recognition accuracy. The proposed CES-CNN is validated by conducting experiments on benchmark datasets and the performance is compared with the state-of-the-art models. It is observed from the experimental results that the proposed model has a significant enhancement in the recognition accuracy compared to the existing models.

摘要

面部表情识别(FER)是包括人机交互和监控在内的许多应用的基础。在开发此类应用时,为了更好地与机器交互,理解人类情感至关重要。在迄今为止开发的众多FER模型中,集成堆叠卷积神经网络(ES-CNN)在提高FER对静态图像的性能方面显示出实证影响。然而,现有的基于ES-CNN的FER模型使用从整个面部提取的特征进行训练,无法解决诸如姿势、光照、遮挡等环境参数问题。为了缓解ES-CNN在部分遮挡面部上性能下降的问题,提出了一种基于组件的ES-CNN(CES-CNN)。CES-CNN将ES-CNN应用于各个面部组件(如眼睛、眉毛、鼻子、脸颊、嘴巴和眉间)的动作单元,作为网络的一个子网。基于最大投票的集成分类器用于集成子网的决策,以获得优化的识别准确率。通过在基准数据集上进行实验对所提出的CES-CNN进行验证,并将性能与现有最先进模型进行比较。从实验结果可以看出,与现有模型相比,所提出的模型在识别准确率上有显著提高。

相似文献

3
Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition.基于主干-分支集成卷积神经网络的视频人脸识别。
IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):1002-1014. doi: 10.1109/TPAMI.2017.2700390. Epub 2017 May 2.

本文引用的文献

3
End-to-end face parsing via interlinked convolutional neural networks.通过互连卷积神经网络实现端到端面部解析
Cogn Neurodyn. 2021 Feb;15(1):169-179. doi: 10.1007/s11571-020-09615-4. Epub 2020 Jul 13.
7
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection.深度身份网络:用于目标检测的可变形深度卷积神经网络
IEEE Trans Pattern Anal Mach Intell. 2017 Jul;39(7):1320-1334. doi: 10.1109/TPAMI.2016.2587642. Epub 2016 Jul 7.
10
Adaptive hypergraph learning and its application in image classification.自适应超图学习及其在图像分类中的应用。
IEEE Trans Image Process. 2012 Jul;21(7):3262-72. doi: 10.1109/TIP.2012.2190083. Epub 2012 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验