Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China.
Department of Physics, University of Pavia, Pavia, Italy.
Phys Med Biol. 2023 Aug 23;68(17). doi: 10.1088/1361-6560/acec2a.
Boron neutron capture therapy (BNCT) is an advanced cellular-level hadron therapy that has exhibited remarkable therapeutic efficacy in the treatment of locally invasive malignancies. Despite its clinical success, the intricate nature of relative biological effectiveness (RBE) and mechanisms responsible for DNA damage remains elusive. This work aims to quantify the RBE of compound particles (i.e. alpha and lithium) in BNCT based on the calculation of DNA damage yields via the Monte Carlo track structure (MCTS) simulation.. The TOPAS-nBio toolkit was employed to conduct MCTS simulations. The calculations encompassed four steps: determination of the angle and energy spectra on the nuclear membrane, quantification of the database containing DNA damage yields for ions with specific angle and energy, accumulation of the database and spectra to obtain the DNA damage yields of compound particles, and calculation of the RBE by comparison yields of double-strand break (DSB) with the reference gamma-ray. Furthermore, the impact of cell size and microscopic boron distribution was thoroughly discussed.. The DSB yields induced by compound particles in three types of spherical cells (radius equal to 10, 8, and 6m) were found to be 13.28, 17.34, 22.15 Gy Gbpfor boronophenylalanine (BPA), and 1.07, 3.45, 8.32 Gy Gbpfor sodium borocaptate (BSH). The corresponding DSB-based RBE values were determined to be 1.90, 2.48, 3.16 for BPA and 0.15, 0.49, 1.19 for BSH. The calculated DSB-based RBE showed agreement with experimentally values of compound biological effectiveness for melanoma and gliosarcoma. Besides, the DNA damage yield and DSB-based RBE value exhibited an increasing trend as the cell radius decreased. The impact of the boron concentration ratio on RBE diminished once the drug enrichment surpasses a certain threshold.. This work is potential to provide valuable guidance for accurate biological-weighted dose evaluation in BNCT.
硼中子俘获治疗(BNCT)是一种先进的基于细胞水平的强子治疗方法,在治疗局部侵袭性恶性肿瘤方面显示出了显著的疗效。尽管其在临床上取得了成功,但相对生物效应(RBE)的复杂性质和导致 DNA 损伤的机制仍然难以捉摸。本工作旨在通过蒙特卡罗轨迹结构(MCTS)模拟计算 DNA 损伤产额来量化 BNCT 中复合粒子(即α粒子和锂离子)的 RBE。TOPAS-nBio 工具包用于进行 MCTS 模拟。计算包括四个步骤:确定核膜上的角度和能谱,量化包含特定角度和能量的离子 DNA 损伤产额的数据库,积累数据库和谱以获得复合粒子的 DNA 损伤产额,并通过与参考伽马射线的双链断裂(DSB)产额比较来计算 RBE。此外,还彻底讨论了细胞大小和微观硼分布的影响。在三种类型的球形细胞(半径分别为 10、8 和 6μm)中,硼苯丙氨酸(BPA)和硼替佐米(BSH)引起的复合粒子的 DSB 产额分别为 13.28、17.34、22.15 Gy Gbp 和 1.07、3.45、8.32 Gy Gbp。相应的 DSB 基 RBE 值分别为 BPA 的 1.90、2.48、3.16 和 BSH 的 0.15、0.49、1.19。计算出的 DSB 基 RBE 与黑色素瘤和神经胶质瘤的复合生物有效性的实验值吻合较好。此外,随着细胞半径的减小,DNA 损伤产额和 DSB 基 RBE 值呈增加趋势。一旦药物富集超过一定阈值,硼浓度比对 RBE 的影响就会减小。这项工作有可能为 BNCT 中准确的生物加权剂量评估提供有价值的指导。