Suppr超能文献

多模态深度学习放射组学列线图用于术前预测乳腺癌的恶性程度:一项多中心研究。

Multimodality deep learning radiomics nomogram for preoperative prediction of malignancy of breast cancer: a multicenter study.

机构信息

School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, People's Republic of China.

Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.

出版信息

Phys Med Biol. 2023 Aug 18;68(17). doi: 10.1088/1361-6560/acec2d.

Abstract

. Breast cancer is the most prevalent cancer diagnosed in women worldwide. Accurately and efficiently stratifying the risk is an essential step in achieving precision medicine prior to treatment. This study aimed to construct and validate a nomogram based on radiomics and deep learning for preoperative prediction of the malignancy of breast cancer (MBC).. The clinical and ultrasound imaging data, including brightness mode (B-mode) and color Doppler flow imaging, of 611 breast cancer patients from multiple hospitals in China were retrospectively analyzed. Patients were divided into one primary cohort (PC), one validation cohort (VC) and two test cohorts (TC1 and TC2). A multimodality deep learning radiomics nomogram (DLRN) was constructed for predicting the MBC. The performance of the proposed DLRN was comprehensively assessed and compared with three unimodal models via the calibration curve, the area under the curve (AUC) of receiver operating characteristics and the decision curve analysis.. The DLRN discriminated well between the MBC in all cohorts [overall AUC (95% confidence interval): 0.983 (0.973-0.993), 0.972 (0.952-0.993), 0.897 (0.823-0.971), and 0.993 (0.977-1.000) on the PC, VC, test cohorts1 (TC1) and test cohorts2 TC2 respectively]. In addition, the DLRN performed significantly better than three unimodal models and had good clinical utility.. The DLRN demonstrates good discriminatory ability in the preoperative prediction of MBC, can better reveal the potential associations between clinical characteristics, ultrasound imaging features and disease pathology, and can facilitate the development of computer-aided diagnosis systems for breast cancer patients. Our code is available publicly in the repository athttps://github.com/wupeiyan/MDLRN.

摘要

. 乳腺癌是全球女性中最常见的癌症。在治疗前准确、有效地对风险进行分层是实现精准医学的关键步骤。本研究旨在构建并验证一种基于放射组学和深度学习的术前预测乳腺癌恶性肿瘤(MBC)的列线图。.. 回顾性分析了来自中国多家医院的 611 例乳腺癌患者的临床和超声影像数据,包括亮度模式(B 模式)和彩色多普勒血流成像。患者被分为一个主要队列(PC)、一个验证队列(VC)和两个测试队列(TC1 和 TC2)。构建了一个多模态深度学习放射组学列线图(DLRN)来预测 MBC。通过校准曲线、受试者工作特征曲线下面积(AUC)和决策曲线分析,对所提出的 DLRN 的性能进行了全面评估,并与三种单模态模型进行了比较。.. 在所有队列中,DLRN 对 MBC 的区分度均较好[整体 AUC(95%置信区间):PC 为 0.983(0.973-0.993),VC 为 0.972(0.952-0.993),TC1 为 0.897(0.823-0.971),TC2 为 0.993(0.977-1.000)]。此外,DLRN 的性能明显优于三种单模态模型,具有良好的临床实用性。.. DLRN 在 MBC 的术前预测中具有良好的判别能力,能够更好地揭示临床特征、超声影像特征与疾病病理之间的潜在关联,并有助于开发用于乳腺癌患者的计算机辅助诊断系统。我们的代码可在 https://github.com/wupeiyan/MDLRN 公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验