Suppr超能文献

应用不同从头组装和校正工具对基于 ONT 测序的临床分离株基因组特征、耐药性和毒力因子鉴定的影响。

The impact of applying various de novo assembly and correction tools on the identification of genome characterization, drug resistance, and virulence factors of clinical isolates using ONT sequencing.

机构信息

OMICS Research Unit, Health Science Centre, Kuwait University, Hawalli Governorate, Kuwait.

Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Hawalli Governorate, Kuwait.

出版信息

BMC Biotechnol. 2023 Jul 31;23(1):26. doi: 10.1186/s12896-023-00797-3.

Abstract

Oxford Nanopore sequencing technology (ONT) is currently widely used due to its affordability, simplicity, and reliability. Despite the advantage ONT has over next-generation sequencing in detecting resistance genes in mobile genetic elements, its relatively high error rate (10-15%) is still a deterrent. Several bioinformatic tools are freely available for raw data processing and obtaining complete and more accurate genome assemblies. In this study, we evaluated the impact of using mix-and-matched read assembly (Flye, Canu, Wtdbg2, and NECAT) and read correction (Medaka, NextPolish, and Racon) tools in generating complete and accurate genome assemblies, and downstream genomic analysis of nine clinical Escherichia coli isolates. Flye and Canu assemblers were the most robust in genome assembly, and Medaka and Racon correction tools significantly improved assembly parameters. Flye functioned well in pan-genome analysis, while Medaka increased the number of core genes detected. Flye, Canu, and NECAT assembler functioned well in detecting antimicrobial resistance genes (AMR), while Wtdbg2 required correction tools for better detection. Flye was the best assembler for detecting and locating both virulence and AMR genes (i.e., chromosomal vs. plasmid). This study provides insight into the performance of several read assembly and read correction tools for analyzing ONT sequencing reads for clinical isolates.

摘要

牛津纳米孔测序技术(ONT)由于其价格合理、简单可靠,目前得到了广泛应用。尽管 ONT 在检测移动遗传元件中的耐药基因方面优于下一代测序,但它相对较高的错误率(10-15%)仍然是一个障碍。有几个免费的生物信息学工具可用于原始数据处理,并获得完整且更准确的基因组组装。在这项研究中,我们评估了使用混合和匹配读组装(Flye、Canu、Wtdbg2 和 NECAT)和读校正(Medaka、NextPolish 和 Racon)工具对九个临床大肠杆菌分离株的完整和准确基因组组装以及下游基因组分析的影响。Flye 和 Canu 组装器在基因组组装方面最稳健,而 Medaka 和 Racon 校正工具显著改善了组装参数。Flye 在泛基因组分析中表现良好,而 Medaka 增加了核心基因的检测数量。Flye、Canu 和 NECAT 组装器在检测抗菌药物耐药基因(AMR)方面表现良好,而 Wtdbg2 需要校正工具以提高检测效果。Flye 是用于检测和定位毒力基因和 AMR 基因(即染色体与质粒)的最佳组装器。本研究为分析临床分离株 ONT 测序数据时使用多种读组装和读校正工具的性能提供了深入了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f2/10391896/b95bdfefc703/12896_2023_797_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验