Rowell Jonathan L, Jia Yafu, Shi Zixiao, Molina Villarino Andrés, Kang Minsoo, Yoon Dasol, Jiang Kevin Zhijian, Abruña Héctor D, Muller David A, Robinson Richard D
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.
J Am Chem Soc. 2023 Aug 9;145(31):17406-17419. doi: 10.1021/jacs.3c05706. Epub 2023 Jul 31.
While certain ternary spinel oxides have been well-explored with colloidal nanochemistry, notably the ferrite spinel family, ternary manganese (Mn)-based spinel oxides have not been tamed. A key composition is cobalt (Co)-Mn oxide (CMO) spinel, CoMnO, that, despite exemplary performance in multiple electrochemical applications, has few reports in the colloidal literature. Of these reports, most show aggregated and polydisperse products. Here, we describe a synthetic method for small, colloidally stable CMO spinel nanocrystals with tunable composition and low dispersity. By reacting 2+ metal-acetylacetonate (M(acac)) precursors in an amine solvent under an oxidizing environment, we developed a pathway that avoids the highly reducing conditions of typical colloidal synthesis reactions; these reducing conditions typically push the system toward a monoxide impurity phase. Through surface chemistry studies, we identify organic byproducts and their formation mechanism, enabling us to engineer the surface and obtain colloidally stable nanocrystals with low organic loading. We report a CMO/carbon composite with low organic contents that performs the oxygen reduction reaction (ORR) with a half-wave potential () of 0.87 V vs RHE in 1.0 M potassium hydroxide at 1600 rpm, rivaling previous reports for the highest activity of this material in ORR electrocatalysis. We extend the general applicability of this procedure to other Mn-based spinel nanocrystals such as Zn-Mn-O, Fe-Mn-O, Ni-Mn-O, and Cu-Mn-O. Finally, we show the scalability of this method by producing inorganic nanocrystals at the gram scale.
虽然某些三元尖晶石氧化物已通过胶体纳米化学得到了充分研究,特别是铁氧体尖晶石家族,但三元锰(Mn)基尖晶石氧化物尚未得到有效控制。一种关键的成分是钴(Co)-锰氧化物(CMO)尖晶石CoMnO,尽管它在多种电化学应用中表现出色,但在胶体文献中的报道却很少。在这些报道中,大多数显示的是聚集且多分散的产物。在此,我们描述了一种合成小尺寸、具有胶体稳定性、成分可调且低分散性的CMO尖晶石纳米晶体的方法。通过在氧化环境下使二价金属乙酰丙酮化物(M(acac))前驱体在胺溶剂中反应,我们开发了一种避免典型胶体合成反应中高还原条件的途径;这些还原条件通常会使体系趋向于生成一氧化物杂质相。通过表面化学研究,我们确定了有机副产物及其形成机制,从而能够对表面进行设计并获得具有低有机负载量的胶体稳定纳米晶体。我们报道了一种低有机含量的CMO/碳复合材料,它在1.0 M氢氧化钾中、1600 rpm转速下对氧还原反应(ORR)的半波电位()为0.87 V(相对于可逆氢电极),可与此前关于该材料在ORR电催化中最高活性的报道相媲美。我们将该方法的普遍适用性扩展到了其他Mn基尖晶石纳米晶体,如Zn-Mn-O、Fe-Mn-O、Ni-Mn-O和Cu-Mn-O。最后,我们通过克级规模生产无机纳米晶体展示了该方法的可扩展性。