Konno Yoshiki, Yamamoto Takayo, Nagayama Tomio
Kyoto Municipal Institute of Industrial Technology and Culture, Kyoto 6008815, Japan.
Nanoscale. 2021 Aug 7;13(29):12738-12749. doi: 10.1039/d1nr02457d. Epub 2021 Jul 21.
An electroplating-anodising method based on a facile and scalable electrochemical process was used to fabricate manganese ferrite porous oxide films for use as precious-metal-free oxygen reduction/evolution reaction (ORR/OER) electrodes. Porous oxide films of spinel manganese ferrites (MnFeO) were formed on electroplated Fe-Mn films. The MnFeO porous oxide formed on microcracks in the Fe-Mn films constituted a nanoporous/microcrack hierarchical structure (NP/MC), which provided a large electrode surface area for ORR/OER. The electrochemically active surface area of the NP/MC on Fe-36 at% Mn was 33.3 cm, which is nine times that of the nanoporous structure on Fe (3.67 cm). The onset potential of the NP/MC on Fe-15 at% Mn and Fe-36 at% Mn was 0.88 V vs. RHE (overpotential, ∼350 mV) for the ORR at -0.1 mA cm. The OER onset potentials at 10 mA cm were 1.79 V on Fe-15 at% Mn (∼560 mV) and 1.74 V on Fe-36 at% Mn (∼510 mV). The OER and ORR activities of the MnFeO porous oxides are better than those of spinel iron oxide (∼510 and ∼640 mV for the ORR and OER, respectively) because of the good intrinsic activity of MnFeO and greater surface area of the NP/MC. The ORR activities of the MnFeO porous oxides decreased to about 30% during ORR durability testing for 7.5 h, and the same level of activity was retained after 24 h of use. The MnFeO porous oxides retained a high level of activity during OER durability testing for 8 h.
一种基于简便且可扩展的电化学过程的电镀-阳极氧化方法被用于制备锰铁氧体多孔氧化物薄膜,用作无贵金属的氧还原/析氧反应(ORR/OER)电极。在电镀的铁-锰薄膜上形成了尖晶石锰铁氧体(MnFeO)的多孔氧化物薄膜。在铁-锰薄膜微裂纹上形成的MnFeO多孔氧化物构成了纳米多孔/微裂纹分级结构(NP/MC),为ORR/OER提供了较大的电极表面积。Fe-36 at% Mn上NP/MC的电化学活性表面积为33.3 cm²,是Fe上纳米多孔结构(3.67 cm²)的九倍。在-0.1 mA cm⁻²的ORR条件下,Fe-15 at% Mn和Fe-36 at% Mn上NP/MC的起始电位相对于可逆氢电极(RHE)为0.88 V(过电位约350 mV)。在10 mA cm⁻²时,Fe-15 at% Mn上的OER起始电位为1.79 V(约560 mV),Fe-36 at% Mn上为1.74 V(约510 mV)。由于MnFeO良好的本征活性和NP/MC更大的表面积,MnFeO多孔氧化物的OER和ORR活性优于尖晶石氧化铁(ORR和OER分别约为510和640 mV)。在7.5小时的ORR耐久性测试期间,MnFeO多孔氧化物的ORR活性下降至约30%,使用24小时后保持相同水平的活性。MnFeO多孔氧化物在8小时的OER耐久性测试期间保持了较高水平的活性。
ACS Appl Mater Interfaces. 2017-5-9
Phys Chem Chem Phys. 2020-10-7
Nanomaterials (Basel). 2022-6-8