Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Nano Lett. 2023 Aug 23;23(16):7477-7484. doi: 10.1021/acs.nanolett.3c01960. Epub 2023 Aug 1.
Lithographic nanopatterning techniques such as photolithography, electron-beam lithography, and nanoimprint lithography (NIL) have revolutionized modern-day electronics and optics. Yet, their application for creating nanobio interfaces is limited by the cytotoxic and two-dimensional nature of conventional fabrication methods. Here, we present a biocompatible and cost-effective transfer process that leverages (a) NIL to define sub-300 nm gold (Au) nanopattern arrays, (b) amine functionalization of Au to transfer the NIL-arrays from a rigid substrate to a soft transfer layer, (c) alginate hydrogel as a flexible, degradable transfer layer, and (d) gelatin conjugation of the Au NIL-arrays to achieve conformal contact with live cells. We demonstrate biotransfer printing of the Au NIL-arrays on rat brains and live cells with high pattern fidelity and cell viability and observed differences in cell migration on the Au NIL-dot and NIL-wire printed hydrogels. We anticipate that this nanolithography-compatible biotransfer printing method could advance bionics, biosensing, and biohybrid tissue interfaces.
光刻纳米图案化技术,如光刻、电子束光刻和纳米压印光刻(NIL),已经彻底改变了现代电子和光学领域。然而,由于传统制造方法的细胞毒性和二维性质,它们在创建纳米生物界面方面的应用受到限制。在这里,我们提出了一种具有生物相容性和成本效益的转移工艺,该工艺利用 (a) NIL 定义亚 300nm 的金 (Au) 纳米图案阵列,(b) Au 的胺官能化将 NIL 阵列从刚性基底转移到软转移层,(c) 藻酸盐水凝胶作为柔性、可降解的转移层,以及 (d) 金 NIL 阵列的明胶缀合以实现与活细胞的共形接触。我们展示了 Au NIL 阵列在大鼠大脑和活细胞上的生物转移打印,具有高图案保真度和细胞活力,并观察到在 Au NIL 点和 NIL 线打印水凝胶上细胞迁移的差异。我们预计,这种与纳米光刻兼容的生物转移打印方法将推动仿生学、生物传感和生物混合组织界面的发展。