Suppr超能文献

无线自组织网络中可扩展的 QoS 感知机会路由中的联合拥塞和避免竞争。

Joint congestion and contention avoidance in a scalable QoS-aware opportunistic routing in wireless ad-hoc networks.

机构信息

Department of Computer Engineering, University of Isfahan, Isfahan, Iran.

Virginia Modeling, Analysis, and Simulation Center, Old Dominion University, Suffolk, VA, United States of America.

出版信息

PLoS One. 2023 Aug 1;18(8):e0288955. doi: 10.1371/journal.pone.0288955. eCollection 2023.

Abstract

Opportunistic routing (OR) can greatly increase transmission reliability and network throughput in wireless ad-hoc networks by taking advantage of the broadcast nature of the wireless medium. However, network congestion is a barrier in the way of OR's performance improvement, and network congestion control is a challenge in OR algorithms, because only the pure physical channel conditions of the links are considered in forwarding decisions. This paper proposes a new method to control network congestion in OR, considering three types of parameters, namely, the backlogged traffic, the traffic flows' Quality of Service (QoS) level, and the channel occupancy rate. Simulation results show that the proposed algorithm outperforms the state-of-the-art algorithms in the context of OR congestion control in terms of average throughput, end-to-end delay, and Packet Delivery Ratio (PDR). Due to the higher PDR at different traffic loads and different node densities, it can be concluded that the proposed algorithm also improves network scalability, which is very desirable given the recent changes in wireless networks.

摘要

机会路由(OR)可以通过利用无线媒介的广播性质,极大地提高无线自组网的传输可靠性和网络吞吐量。然而,网络拥塞是 OR 性能提升的障碍,网络拥塞控制是 OR 算法中的一个挑战,因为在转发决策中只考虑链路的纯物理信道条件。本文提出了一种新的方法来控制 OR 中的网络拥塞,考虑了三种类型的参数,即拥塞业务量、业务流的服务质量(QoS)水平和信道占用率。仿真结果表明,在所提出的算法中,在 OR 拥塞控制方面,平均吞吐量、端到端延迟和分组投递率(PDR)方面均优于最先进的算法。由于在不同的业务量和不同的节点密度下具有更高的 PDR,可以得出结论,所提出的算法还提高了网络的可扩展性,这在无线网络最近的变化情况下是非常理想的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0e3/10393171/73f4a4bdc9d3/pone.0288955.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验