IEEE Trans Neural Syst Rehabil Eng. 2023;31:3285-3296. doi: 10.1109/TNSRE.2023.3300961. Epub 2023 Aug 18.
Generalizing the electroencephalogram (EEG) decoding methods to unseen subjects is an important research direction for realizing practical application of brain-computer interfaces (BCIs). Since distribution shifts across subjects, the performance of most current deep neural networks for decoding EEG signals degrades when dealing with unseen subjects. Domain generalization (DG) aims to tackle this issue by learning invariant representations across subjects. To this end, we propose a novel domain-generalized EEG classification framework, named FDCL, to generalize EEG decoding through category-relevant and -irrelevant Feature Decorrelation and Cross-view invariant feature Learning. Specifically, we first devise data augmented regularization through mixing the segments of same-category features from multiple subjects, which increases the diversity of EEG data by spanning the space of subjects. Furthermore, we introduce feature decorrelation regularization to learn the weights of the augmented EEG trials to remove the dependencies between their features, so that the true mapping relationship between relevant features and corresponding labels can be better established. To further distill subject-invariant EEG feature representations, cross-view consistency learning regularization is introduced to encourage consistent predictions of category-relevant features induced from different augmented EEG views. We seamlessly integrate three complementary regularizations into a unified DG framework to jointly improve the generalizability and robustness of the model on unseen subjects. Experimental results on motor imagery (MI) based EEG datasets validate that the proposed FDCL outperforms the available state-of-the-art methods.
将脑电图(EEG)解码方法推广到未见的受试者是实现脑机接口(BCI)实际应用的一个重要研究方向。由于受试者之间存在分布偏移,大多数用于解码 EEG 信号的当前深度神经网络在处理未见的受试者时性能会下降。域泛化(DG)旨在通过学习受试者之间的不变表示来解决这个问题。为此,我们提出了一种新颖的域泛化 EEG 分类框架,称为 FDCL,通过类别相关和不相关的特征关联和跨视图不变特征学习来推广 EEG 解码。具体来说,我们首先通过混合来自多个受试者的同类别特征的片段来设计数据增强正则化,这通过跨越受试者的空间增加 EEG 数据的多样性。此外,我们引入特征关联正则化来学习增强 EEG 试验的权重,以去除它们特征之间的依赖性,从而可以更好地建立相关特征与相应标签之间的真实映射关系。为了进一步提取受试者不变的 EEG 特征表示,引入了跨视图一致性学习正则化,以鼓励从不同增强 EEG 视图中诱导的类别相关特征的一致预测。我们将这三种互补的正则化无缝地集成到一个统一的 DG 框架中,以共同提高模型在未见受试者上的泛化能力和鲁棒性。基于运动想象(MI)的 EEG 数据集的实验结果验证了所提出的 FDCL 优于现有的最先进方法。