Suppr超能文献

用于高效视觉表征学习的轻量级像素差分网络

Lightweight Pixel Difference Networks for Efficient Visual Representation Learning.

作者信息

Su Zhuo, Zhang Jiehua, Wang Longguang, Zhang Hua, Liu Zhen, Pietikainen Matti, Liu Li

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):14956-14974. doi: 10.1109/TPAMI.2023.3300513. Epub 2023 Nov 3.

Abstract

Recently, there have been tremendous efforts in developing lightweight Deep Neural Networks (DNNs) with satisfactory accuracy, which can enable the ubiquitous deployment of DNNs in edge devices. The core challenge of developing compact and efficient DNNs lies in how to balance the competing goals of achieving high accuracy and high efficiency. In this paper we propose two novel types of convolutions, dubbed Pixel Difference Convolution (PDC) and Binary PDC (Bi-PDC) which enjoy the following benefits: capturing higher-order local differential information, computationally efficient, and able to be integrated with existing DNNs. With PDC and Bi-PDC, we further present two lightweight deep networks named Pixel Difference Networks (PiDiNet) and Binary PiDiNet (Bi-PiDiNet) respectively to learn highly efficient yet more accurate representations for visual tasks including edge detection and object recognition. Extensive experiments on popular datasets (BSDS500, ImageNet, LFW, YTF, etc.) show that PiDiNet and Bi-PiDiNet achieve the best accuracy-efficiency trade-off. For edge detection, PiDiNet is the first network that can be trained without ImageNet, and can achieve the human-level performance on BSDS500 at 100 FPS and with 1 M parameters. For object recognition, among existing Binary DNNs, Bi-PiDiNet achieves the best accuracy and a nearly 2× reduction of computational cost on ResNet18.

摘要

最近,人们在开发具有令人满意精度的轻量级深度神经网络(DNN)方面付出了巨大努力,这使得DNN能够在边缘设备中广泛部署。开发紧凑高效的DNN的核心挑战在于如何平衡实现高精度和高效率这两个相互竞争的目标。在本文中,我们提出了两种新型卷积,分别称为像素差分卷积(PDC)和二进制PDC(Bi-PDC),它们具有以下优点:能够捕获高阶局部差分信息、计算效率高,并且能够与现有DNN集成。利用PDC和Bi-PDC,我们进一步分别提出了两个轻量级深度网络,即像素差分网络(PiDiNet)和二进制PiDiNet(Bi-PiDiNet),用于为包括边缘检测和目标识别在内的视觉任务学习高效且更准确的表示。在流行数据集(BSDS500、ImageNet、LFW、YTF等)上进行的大量实验表明,PiDiNet和Bi-PiDiNet实现了最佳的精度-效率权衡。对于边缘检测,PiDiNet是第一个无需使用ImageNet即可训练的网络,并且在BSDS500上以100 FPS和100万个参数的情况下能够达到人类水平的性能。对于目标识别,在现有的二进制DNN中,Bi-PiDiNet在ResNet18上实现了最佳精度,并且计算成本降低了近2倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验