Suppr超能文献

用于锂金属电池的不可燃无溶剂液体聚合物电解质。

Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries.

作者信息

Zhu Guo-Rui, Zhang Qin, Liu Qing-Song, Bai Qi-Yao, Quan Yi-Zhou, Gao You, Wu Gang, Wang Yu-Zhong

机构信息

The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.

出版信息

Nat Commun. 2023 Aug 1;14(1):4617. doi: 10.1038/s41467-023-40394-8.

Abstract

As a replacement for highly flammable and volatile organic liquid electrolyte, solid polymer electrolyte shows attractive practical prospect in high-energy lithium metal batteries. However, unsatisfied interface performance and ionic conductivities are two critical challenges. A common strategy involves introducing organic solvents or plasticizers, but this violates the original intention of security design. Here, an electrolyte concept called liquid polymer electrolyte without any small molecular solvents is proposed for safe and high-performance batteries, based on the design of a room-temperature liquid-state brush-like polymer as the sole solvent of lithium salts. This liquid polymer electrolyte is non-flammable and exhibits high ionic conductivity (1.09 [Formula: see text] 10S cm at 25 °C), significant lithium dendrite suppression, and stable long-term cycling over a wide operating temperature range ( ≥ 1000 cycles at 60 °C and 90 °C). Moreover, the pouch cell can resist thermal abuse, vacuum environment, and mechanical abuse. This electrolyte and design strategy are expected to provide enlightening ideas for the development of safe and high-performance polymer electrolytes.

摘要

作为高度易燃且易挥发的有机液体电解质的替代品,固体聚合物电解质在高能锂金属电池中展现出诱人的实际应用前景。然而,不尽人意的界面性能和离子电导率是两个关键挑战。一种常见策略是引入有机溶剂或增塑剂,但这违背了安全设计的初衷。在此,基于将室温液态刷状聚合物设计为锂盐的唯一溶剂,提出了一种用于安全高性能电池的名为无任何小分子溶剂的液态聚合物电解质的电解质概念。这种液态聚合物电解质不可燃,在25℃时具有高离子电导率(1.09×10⁻³ S cm⁻¹),显著抑制锂枝晶生长,并且在较宽的工作温度范围内(60℃和90℃下≥1000次循环)能实现稳定的长期循环。此外,软包电池能够抵抗热滥用、真空环境和机械滥用。这种电解质及其设计策略有望为安全高性能聚合物电解质的开发提供启发性思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d3f/10394022/b7cbd08426f0/41467_2023_40394_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验