Suppr超能文献

论细胞的渗透压。

On the osmotic pressure of cells.

作者信息

Wennerström Håkan, Oliveberg Mikael

机构信息

Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden.

Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.

出版信息

QRB Discov. 2022 Jul 11;3:e12. doi: 10.1017/qrd.2022.3. eCollection 2022.

Abstract

The chemical potential of water () provides an essential thermodynamic characterization of the environment of living organisms, and it is of equal significance as the temperature. For cells, is conventionally expressed in terms of the osmotic pressure (π). We have previously suggested that the main contribution to the intracellular π of the bacterium is from soluble negatively-charged proteins and their counter-ions. Here, we expand on this analysis by examining how evolutionary divergent cell types cope with the challenge of maintaining π within viable values. Complex organisms, like mammals, maintain constant internal π ≈ 0.285 osmol, matching that of 0.154 M NaCl. For bacteria it appears that optimal growth conditions are found for similar or slightly higher π (0.25-0.4 osmol), despite that they represent a much earlier stage in evolution. We argue that this value reflects a general adaptation for optimising metabolic function under crowded intracellular conditions. Environmental π that differ from this optimum require therefore special measures, as exemplified with gram-positive and gram-negative bacteria. To handle such situations, their membrane encapsulations allow for a compensating turgor pressure that can take both positive and negative values, where positive pressures allow increased frequency of metabolic events through increased intracellular protein concentrations. A remarkable exception to the rule of 0.25-0.4 osmol, is found for halophilic archaea with internal π ≈ 15 osmol. The internal organization of these archaea differs in that they utilize a repulsive electrostatic mechanism operating only in the ionic-liquid regime to avoid aggregation, and that they stand out from other organisms by having no turgor pressure.

摘要

水的化学势()为生物生存环境提供了重要的热力学特征描述,其与温度具有同等重要意义。对于细胞而言,通常根据渗透压(π)来表示。我们之前曾提出,细菌细胞内渗透压的主要贡献来自可溶性带负电荷的蛋白质及其抗衡离子。在此,我们通过研究进化上不同的细胞类型如何应对将渗透压维持在可行值范围内这一挑战,对该分析进行拓展。像哺乳动物这样的复杂生物体,维持恒定的内部渗透压≈0.285渗透压,与0.154M氯化钠的渗透压相当。对于细菌而言,尽管它们处于进化的更早阶段,但似乎在类似或略高的渗透压(0.25 - 0.4渗透压)下能找到最佳生长条件。我们认为这个值反映了在细胞内拥挤条件下优化代谢功能的一般适应性。因此,与这个最佳值不同的环境渗透压需要特殊措施,革兰氏阳性菌和革兰氏阴性菌就是例证。为应对这种情况,它们的细胞膜包裹允许产生可正可负的补偿性膨压,正压通过增加细胞内蛋白质浓度来提高代谢事件的发生频率。对于内部渗透压≈15渗透压的嗜盐古菌,是0.25 - 0.4渗透压这一规则的显著例外。这些古菌内部结构不同,它们利用仅在离子液体状态下起作用的排斥性静电机制来避免聚集,并且它们与其他生物体的不同之处在于没有膨压。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验