Suppr超能文献

钛植入材料的生存能力:体外模拟的炎症和感染环境。

Survivability of Titanium Implant Materials: In Vitro Simulated Inflammatory and Infectious Environment.

机构信息

Regenerative Medicine and Disability Research Lab, University of Illinois College of Medicine, Rockford, IL, USA.

Department of Biomedical Engineering, College of Engineering, University of Illinois , Chicago, IL, USA.

出版信息

Ann Biomed Eng. 2023 Dec;51(12):2749-2761. doi: 10.1007/s10439-023-03330-x. Epub 2023 Aug 2.

Abstract

Titanium-based implants utilized in total joint arthroplasties could restore primary musculoskeletal function to patients suffering from osteoarthritis and other conditions. Implants are susceptible to failure stemming from aseptic loosening and infection at the joint site, eventually requiring revision surgery. We hypothesized that there might be a feedback loop by which metal degradation particles and ions released from the implant decrease cell viability and increase immune response, thereby creating biochemical conditions that increase the corrosion rate and release more metal ions. This study focused on the synergistic process through cell viability assays and electrochemical tests. From the results, inflammatory conditions from ion release resulting in cell death would further increase the corrosion rate at the metal implant site. The synergistic interaction in the implant surroundings in which infectious conditions produce Ti ions that contribute to more infection, creating a potential cycle of accelerating corrosion.

摘要

钛基植入物在全关节置换术中的应用可以恢复患有骨关节炎和其他疾病的患者的主要肌肉骨骼功能。植入物容易因关节部位的无菌性松动和感染而失效,最终需要进行翻修手术。我们假设可能存在一个反馈回路,即植入物释放的金属降解颗粒和离子会降低细胞活力并增加免疫反应,从而创造出增加腐蚀速率并释放更多金属离子的生化条件。本研究通过细胞活力测定和电化学测试来关注协同过程。从结果来看,离子释放引起的炎症条件会导致细胞死亡,从而进一步增加金属植入部位的腐蚀速率。在植入物环境中存在协同作用,感染条件会产生有助于更多感染的钛离子,从而形成加速腐蚀的潜在循环。

相似文献

1
Survivability of Titanium Implant Materials: In Vitro Simulated Inflammatory and Infectious Environment.
Ann Biomed Eng. 2023 Dec;51(12):2749-2761. doi: 10.1007/s10439-023-03330-x. Epub 2023 Aug 2.
3
Spinal implant debris-induced osteolysis.
Spine (Phila Pa 1976). 2003 Oct 15;28(20):S125-38. doi: 10.1097/00007632-200310151-00006.
4
In vitro biocorrosion of Ti-6Al-4V implant alloy by a mouse macrophage cell line.
J Biomed Mater Res A. 2004 Mar 15;68(4):717-24. doi: 10.1002/jbm.a.20092.
5
Wear and Corrosion Interactions at the Titanium/Zirconia Interface: Dental Implant Application.
J Prosthodont. 2018 Dec;27(9):842-852. doi: 10.1111/jopr.12769. Epub 2018 Mar 9.
6
8
In Vitro Corrosion Assessment of the Essure® Medical Device in Saline, Simulated Inflammatory Solution and Neutral Buffered Formalin.
Acta Biomater. 2022 Jul 15;147:414-426. doi: 10.1016/j.actbio.2022.05.028. Epub 2022 May 19.
9
Characterization of ion release from a novel biomaterial, Molybdenum-47.5Rhenium, in physiologic environments.
Spine J. 2023 Jun;23(6):900-911. doi: 10.1016/j.spinee.2023.01.007. Epub 2023 Jan 25.
10
Fretting corrosion behaviour of Ti-6Al-4V reinforced with zirconia in foetal bovine serum.
J Mech Behav Biomed Mater. 2019 Dec;100:103392. doi: 10.1016/j.jmbbm.2019.103392. Epub 2019 Aug 6.

引用本文的文献

1
Evaluating the potential hepatotoxicity from hip implant wear products-An and study.
Biomater Biosyst. 2025 May 18;18:100113. doi: 10.1016/j.bbiosy.2025.100113. eCollection 2025 Jun.
3
Can ChatGPT be Trusted for Consulting? Uncovering Doctor's Perceptions Using Deep Learning Techniques.
Ann Biomed Eng. 2023 Oct;51(10):2116-2119. doi: 10.1007/s10439-023-03245-7. Epub 2023 May 19.
4
GPT4: The Indispensable Helper for Neurosurgeons in the New Era.
Ann Biomed Eng. 2023 Oct;51(10):2113-2115. doi: 10.1007/s10439-023-03241-x. Epub 2023 May 18.
5
AI Tackles Pandemics: ChatGPT's Game-Changing Impact on Infectious Disease Control.
Ann Biomed Eng. 2023 Oct;51(10):2097-2099. doi: 10.1007/s10439-023-03239-5. Epub 2023 May 18.
6
Artificial Intelligence in Intensive Care Medicine: Toward a ChatGPT/GPT-4 Way?
Ann Biomed Eng. 2023 Sep;51(9):1898-1903. doi: 10.1007/s10439-023-03234-w. Epub 2023 May 13.

本文引用的文献

1
Insight Into Corrosion of Dental Implants: From Biochemical Mechanisms to Designing Corrosion-Resistant Materials.
Curr Oral Health Rep. 2022;9(2):7-21. doi: 10.1007/s40496-022-00306-z. Epub 2022 Jan 29.
2
Impact of tribocorrosion and titanium particles release on dental implant complications - A narrative review.
Jpn Dent Sci Rev. 2021 Nov;57:182-189. doi: 10.1016/j.jdsr.2021.09.001. Epub 2021 Sep 29.
3
Aseptic and septic prosthetic joint loosening: Impact of biomaterial wear on immune cell function, inflammation, and infection.
Biomaterials. 2021 Nov;278:121127. doi: 10.1016/j.biomaterials.2021.121127. Epub 2021 Sep 9.
4
Off-the-shelf 3D printed titanium cups in primary total hip arthroplasty.
World J Orthop. 2021 Jun 18;12(6):376-385. doi: 10.5312/wjo.v12.i6.376.
5
Complication rates and resource utilization after total hip and knee arthroplasty stratified by body mass index.
J Orthop. 2021 Feb 20;24:111-120. doi: 10.1016/j.jor.2021.02.024. eCollection 2021 Mar-Apr.
6
Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants.
ACS Biomater Sci Eng. 2017 Jul 10;3(7):1245-1261. doi: 10.1021/acsbiomaterials.6b00604. Epub 2017 Mar 14.
7
Titanium Corrosion in Peri-Implantitis.
Materials (Basel). 2020 Dec 2;13(23):5488. doi: 10.3390/ma13235488.
8
Peri-implantitis Update: Risk Indicators, Diagnosis, and Treatment.
Eur J Dent. 2020 Oct;14(4):672-682. doi: 10.1055/s-0040-1715779. Epub 2020 Sep 3.
9
Biomechanics of Implant Fixation in Osteoporotic Bone.
Curr Osteoporos Rep. 2020 Oct;18(5):577-586. doi: 10.1007/s11914-020-00614-2.
10
Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review.
Biomed Mater. 2020 Aug 31;15(5):052003. doi: 10.1088/1748-605X/ab9078.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验