Suppr超能文献

基于内脏脂肪面积和磁共振成像构建预测胰十二指肠切除术后临床相关术后胰瘘的列线图

Development of a Nomogram to Predict Clinically Relevant Postoperative Pancreatic Fistula After Pancreaticoduodenectomy on the Basis of Visceral Fat Area and Magnetic Resonance Imaging.

作者信息

Zou Jiayue, Xue Xiaofeng, Qin Lei

机构信息

Department of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.

出版信息

Ann Surg Oncol. 2023 Nov;30(12):7712-7719. doi: 10.1245/s10434-023-13943-0. Epub 2023 Aug 2.

Abstract

BACKGROUND

The aim of this study was to develop a nomogram to predict the risk of developing clinically relevant postoperative pancreatic fistula (CR-POPF) after pancreaticoduodenectomy (PD) using preoperative clinical and imaging data.

METHODS

The data of 205 patients were retrospectively analyzed, randomly divided into training (n = 125) and testing groups (n = 80). The patients' preoperative laboratory indicators, preoperative clinical baseline data, and preoperative imaging data [enhanced computed tomography (CT), enhanced magnetic resonance imaging (MRI)] were collected. Univariate analyses combined with multivariate logistic regression were used to identify the independent risk factors for CR-POPF. These factors were used to train and validate the model and to develop the risk nomogram. The area under the curve (AUC) was used to measure the predictive ability of the models. The integrated discrimination improvement index (IDI) and decision curve analysis (DCA) were used to assess the clinical feasibility of the nomogram in relation to five other models established in literature.

RESULTS

CT visceral fat area (P = 0.014), the pancreatic spleen signal ratio on T1 fat-suppressed MRI sequences (P < 0.001), and CT main pancreatic duct diameter (P = 0.001) were identified as independent prognostic factors and used to develop the model. The final nomogram achieved an AUC of 0.903. The IDI and DCA showed that the nomogram outperformed the other five CR-POPF models in the training and testing cohorts.

CONCLUSION

The nomogram achieved a superior predictive ability for CR-POPF following PD than other models described in literature. Clinicians can use this simple model to optimize perioperative planning according to the patient's risk of developing CR-POPF.

摘要

背景

本研究的目的是使用术前临床和影像数据开发一种列线图,以预测胰十二指肠切除术(PD)后发生临床相关术后胰瘘(CR-POPF)的风险。

方法

回顾性分析205例患者的数据,随机分为训练组(n = 125)和测试组(n = 80)。收集患者的术前实验室指标、术前临床基线数据和术前影像数据[增强计算机断层扫描(CT)、增强磁共振成像(MRI)]。采用单因素分析结合多因素逻辑回归来确定CR-POPF的独立危险因素。这些因素用于训练和验证模型,并开发风险列线图。曲线下面积(AUC)用于衡量模型的预测能力。综合鉴别改善指数(IDI)和决策曲线分析(DCA)用于评估列线图相对于文献中建立的其他五个模型的临床可行性。

结果

CT内脏脂肪面积(P = 0.014)、T1脂肪抑制MRI序列上的胰脾信号比(P < 0.001)和CT主胰管直径(P = 0.001)被确定为独立的预后因素,并用于开发模型。最终的列线图AUC为0.903。IDI和DCA表明,在训练和测试队列中,列线图的表现优于其他五个CR-POPF模型。

结论

该列线图对PD术后CR-POPF的预测能力优于文献中描述的其他模型。临床医生可以使用这个简单的模型,根据患者发生CR-POPF的风险优化围手术期规划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验