Suppr超能文献

Hopantenate interference on the adaptation of muscular energy metabolism to intermittent hypoxia.

作者信息

Pastoris O, Vercesi L, Mazzocchi A, Dossena M, Benzi G

出版信息

Arch Int Pharmacodyn Ther. 1986 Jun;281(2):311-20.

PMID:3753104
Abstract

In rat gastrocnemius muscle, the concentrations of glycolytic fuels, intermediates and end-products; Krebs cycle intermediates and related free amino acids; ammonia; energy store and mediators; and the energy charge potential were evaluated in normoxia or after repeated, alternate hypoxic and normoxic exposures (12 hr of hypoxia daily; for 5 days) with or without treatment with hopantenate (HOPA). Furthermore, in the crude extract and/or mitochondrial fraction the maximum rate (Vmax) of some muscular enzymes related to the anaerobic glycolytic pathway; the tricarboxylic acid cycle; and the electron transfer chain were evaluated. Hopantenate was administered daily at the dose of 250 mg.kg-1 i.p., for 5 days, 30 min before the beginning of the experimental normobaric hypoxia. The biochemical adaptation to intermittent normobaric hypoxic-normoxic exposures was characterized by the decrease of the muscular concentrations of citrate, alpha-ketoglutarate and glutamate, in absence of changes in the Vmax of the muscle enzymes related to energy transduction. In gastrocnemius muscle from hypoxic rats, by HOPA treatment, both citrate and alpha-ketoglutarate maintained normal values, aspartate decreased, while glutamate remained reduced to subnormal values. In the muscle from hypoxic animals, by hopantenate treatment the Vmax of the mitochondrial enzymes tested (citrate synthase, malate dehydrogenase, total NADH cytochrome c reductase, cytochrome oxidase) decreased in comparison with both hypoxic and normoxic untreated animals. This behaviour could be tentatively related to a mitochondrial sparing action concomitant with an intervention of the glutamate group of amino acids, even if the results do not allow a clear interpretation of the mechanism of HOPA action.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验