Suppr超能文献

星际条件下笼形水合物的形成与转化

Formation and Transformation of Clathrate Hydrates under Interstellar Conditions.

作者信息

Ghosh Jyotirmoy, Vishwakarma Gaurav, Kumar Rajnish, Pradeep Thalappil

机构信息

Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India.

Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

出版信息

Acc Chem Res. 2023 Aug 15;56(16):2241-2252. doi: 10.1021/acs.accounts.3c00317. Epub 2023 Aug 2.

Abstract

ConspectusContinuing efforts by many research groups have led to the discovery of ∼240 species in the interstellar medium (ISM). Observatory- and laboratory-based astrochemical experiments have led to the discovery of these species, including several complex organic molecules (COMs). Interstellar molecular clouds, consisting of water-rich icy grains, have been recognized as the primordial sources of COMs even at extremely low temperatures (∼10 K). Therefore, it is paramount to understand the chemical processes of this region, which may contribute to the chemical evolution and formation of new planetary systems and the origin of life.This Account discusses our effort to discover clathrate hydrates (CHs) of several molecules and their structural varieties, transformations, and kinetics in a simulated interstellar environment. CHs are nonstochiometric crystalline host-guest complexes in which water molecules form cages of different sizes to entrap guest molecules. CHs are abundant on earth and require moderate temperatures and high pressures for their formation. Our focus has been to form CHs at extremely low pressure and temperature as in the ISM, although their existence under such conditions has been a long-standing question since water and guest molecules (CH, CO, CO, etc.) exist in space. In multiple studies conducted at ∼10 mbar, we showed that CH, CO, and CH hydrates could be formed at 30, 10, and 60 K, respectively. Well-defined IR spectroscopic features supported by quantum chemical simulations and temperature-programmed desorption mass spectrometric analyses confirmed the existence of the 5 (for CH and CO) and 56 (for CH) CH cages. Mild thermal activation for long periods under ultrahigh vacuum (UHV) allowed efficient molecular diffusion, which is crucial for forming CHs. We also explored the formation of THF hydrate (a promoter/stabilizer for binary CHs), and a spontaneous method was found for its formation under UHV. In a subsequent study, we observed a binary THF-CO hydrate and its thermal processing at 130 K leading to the transportation of CO from the hydrate cages to the matrix of amorphous water. The findings imply that such systems possess a dynamic setting that facilitates the movement of molecules, potentially accounting for the chemical changes observed in the ISM. Furthermore, an intriguing fundamental phenomenon is the consequences of these CHs and their dynamics. We showed that preformed acetone and formaldehyde hydrates dissociate to form cubic (I) and hexagonal (I) ices at 130-135 K, respectively. These unique processes could be the mechanistic routes for the formation of various ices in astrophysical environments.Other than adding a new entry, namely, CHs, to the list of species found in ISM, its existence opens new directions to astrochemistry, observational astronomy, and astrobiology. Our work provides a molecular-level understanding of the formation pathways of CHs and their transformation to crystalline ices, which sheds light on the chemical evolution of simple molecules to COMs in ISM. Furthermore, CHs can be potential candidates for studies involving radiation, ionization, and electron impact to initiate chemical transformations between the host and guest species and may be critical in understanding the origin of life.

摘要

概述

许多研究小组的持续努力已在星际介质(ISM)中发现了约240种物质。基于天文台和实验室的天体化学实验促成了这些物质的发现,其中包括几种复杂有机分子(COM)。由富含水的冰粒组成的星际分子云,即使在极低温度(约10 K)下也被认为是COM的原始来源。因此,了解该区域的化学过程至关重要,这可能有助于新行星系统的化学演化和形成以及生命的起源。

本综述讨论了我们在模拟星际环境中发现几种分子的笼形水合物(CH)及其结构变体、转变和动力学的工作。CH是一种非化学计量的晶体主客体复合物,其中水分子形成不同大小的笼以捕获客体分子。CH在地球上很丰富,其形成需要适度的温度和高压。我们的重点是在ISM中那样的极低压力和温度下形成CH,尽管自水和客体分子(CH、CO、CO等)存在于太空中以来,它们在这种条件下的存在一直是一个长期存在的问题。在约10毫巴下进行的多项研究表明,CH、CO和CH水合物分别可以在30 K、10 K和60 K下形成。量子化学模拟和程序升温脱附质谱分析支持的明确红外光谱特征证实了5种(对于CH和CO)和56种(对于CH)CH笼的存在。在超高真空(UHV)下长时间的温和热活化允许有效的分子扩散,这对于形成CH至关重要。我们还探索了四氢呋喃水合物(二元CH的促进剂/稳定剂)的形成,并发现了一种在UHV下形成它的自发方法。在随后的一项研究中,我们观察到二元四氢呋喃 - CO水合物及其在130 K下的热处理,导致CO从水合物笼转移到无定形水基质中。这些发现意味着这样的系统具有促进分子移动的动态环境,这可能解释了在ISM中观察到的化学变化。此外,一个有趣的基本现象是这些CH及其动力学的后果。我们表明,预先形成的丙酮和甲醛水合物分别在130 - 135 K下解离形成立方(I)和六方(I)冰。这些独特的过程可能是天体物理环境中各种冰形成的机制途径。

除了在ISM中发现的物质列表中添加一个新条目,即CH之外,它的存在为天体化学、观测天文学和天体生物学开辟了新方向。我们的工作提供了对CH形成途径及其向结晶冰转变的分子水平理解,这为ISM中简单分子向COM的化学演化提供了线索。此外,CH可能是涉及辐射、电离和电子撞击以引发主客体物种之间化学转化研究的潜在候选者,并且可能对理解生命起源至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验