Cao Wenjun, Li Li, Zhao Hanyu, Wang Changyuan, Liang Cen, Li Feng, Huang Xuechen, Wang Chunchang
Laboratory of Dielectric Functional Materials, School of Materials Science & Engineering, Anhui University, Hefei 230601, China.
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
ACS Appl Mater Interfaces. 2023 Aug 16;15(32):38633-38643. doi: 10.1021/acsami.3c08791. Epub 2023 Aug 2.
Ultrahigh energy-storage performance of dielectric ceramic capacitors is generally achieved under high electric fields (HEFs). However, the HEFs strongly limit the miniaturization, integration, and lifetime of the dielectric energy-storage capacitors. Thus, it is necessary to develop new energy-storage materials with excellent energy-storage densities under moderate electric fields (MEFs). Herein, the antiferroelectric material AgCaNbO (ACN) was used to modify the relaxor ferroelectric material 0.6NaBiTiO-0.4SrBiTiO (NBT-SBT). The introduction of ACN results in high polarization strength, regulated composition of rhombohedral (3) and tetragonal (4), nanodomains, and refined grain size. An outstanding recoverable energy density ( = 4.6 J/cm) and high efficiency (η = 82%) were realized under an MEF of 260 kV/cm in 4 mol % ACN-modified NBT-SBT ceramic. The first-principles calculation reveals that the interaction between Bi and O is the intrinsic mechanism of the increased polarization. A new parameter Δ/ was proposed to be used as the figure of merit to measure the energy-storage performance under MEFs (∼200-300 kV/cm). This work paves a new way to explore energy-storage materials with excellent-performance MEFs.
介电陶瓷电容器的超高储能性能通常是在高电场(HEFs)下实现的。然而,高电场严重限制了介电储能电容器的小型化、集成化和使用寿命。因此,有必要开发在中等电场(MEFs)下具有优异储能密度的新型储能材料。在此,反铁电材料AgCaNbO(ACN)被用于改性弛豫铁电材料0.6NaBiTiO-0.4SrBiTiO(NBT-SBT)。ACN的引入导致了高极化强度、菱面体(3)和四方(4)相的调控组成、纳米畴以及细化的晶粒尺寸。在4 mol% ACN改性的NBT-SBT陶瓷中,在260 kV/cm的中等电场下实现了出色的可恢复能量密度(= 4.6 J/cm)和高效率(η = 82%)。第一性原理计算表明,Bi和O之间的相互作用是极化增加的内在机制。提出了一个新的参数Δ/作为衡量中等电场(约200 - 300 kV/cm)下储能性能的品质因数。这项工作为探索具有优异中等电场性能的储能材料开辟了一条新途径。