Suppr超能文献

通过机器学习实现对过冷液体中空间和动态非均质性的自动表征。

Automated characterization of spatial and dynamical heterogeneity in supercooled liquids via implementation of machine learning.

作者信息

Nguyen Viet, Song Xueyu

机构信息

Ames Laboratory and Department of Chemistry, Iowa State University, Ames, IA, United States of America.

出版信息

J Phys Condens Matter. 2023 Aug 23;35(46). doi: 10.1088/1361-648X/acecef.

Abstract

A computational approach by an implementation of the principle component analysis (PCA) with-means and Gaussian mixture (GM) clustering methods from machine learning algorithms to identify structural and dynamical heterogeneities of supercooled liquids is developed. In this method, a collection of the average weighted coordination numbers (WCNs‾) of particles calculated from particles' positions are used as an order parameter to build a low-dimensional representation of feature (structural) space for-means clustering to sort the particles in the system into few meso-states using PCA. Nano-domains or aggregated clusters are also formed in configurational (real) space from a direct mapping using associated meso-states' particle identities with some misclassified interfacial particles. These classification uncertainties can be improved by a co-learning strategy which utilizes the probabilistic GM clustering and the information transfer between the structural space and configurational space iteratively until convergence. A final classification of meso-states in structural space and domains in configurational space are stable over long times and measured to have dynamical heterogeneities. Armed with such a classification protocol, various studies over the thermodynamic and dynamical properties of these domains indicate that the observed heterogeneity is the result of liquid-liquid phase separation after quenching to a supercooled state.

摘要

开发了一种计算方法,通过实施主成分分析(PCA)以及机器学习算法中的均值和高斯混合(GM)聚类方法,来识别过冷液体的结构和动力学异质性。在该方法中,根据粒子位置计算得到的粒子平均加权配位数((\overline{WCNs}))集合被用作序参量,以构建特征(结构)空间的低维表示,用于均值聚类,从而使用PCA将系统中的粒子分类为几个介观状态。纳米域或聚集簇也通过直接映射在构型(实际)空间中形成,该映射使用相关介观状态的粒子标识以及一些误分类的界面粒子。这些分类不确定性可以通过一种协同学习策略来改善,该策略迭代地利用概率GM聚类以及结构空间和构型空间之间的信息传递,直到收敛。结构空间中介观状态和构型空间中域的最终分类在长时间内是稳定的,并且测量结果显示存在动力学异质性。有了这样的分类协议,对这些域的热力学和动力学性质的各种研究表明,观察到的异质性是淬火到过冷状态后液 - 液相分离的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验