Suppr超能文献

通过社区推断评估过冷液体的结构异质性。

Assessing the structural heterogeneity of supercooled liquids through community inference.

机构信息

Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France.

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

出版信息

J Chem Phys. 2020 Apr 14;152(14):144502. doi: 10.1063/5.0004732.

Abstract

We present an information-theoretic approach inspired by distributional clustering to assess the structural heterogeneity of particulate systems. Our method identifies communities of particles that share a similar local structure by harvesting the information hidden in the spatial variation of two- or three-body static correlations. This corresponds to an unsupervised machine learning approach that infers communities solely from the particle positions and their species. We apply this method to three models of supercooled liquids and find that it detects subtle forms of local order, as demonstrated by a comparison with the statistics of Voronoi cells. Finally, we analyze the time-dependent correlation between structural communities and particle mobility and show that our method captures relevant information about glassy dynamics.

摘要

我们提出了一种基于分布聚类的信息论方法,用于评估颗粒系统的结构异质性。我们的方法通过挖掘两体或三体静态相关函数空间变化中隐藏的信息,识别具有相似局部结构的颗粒群。这对应于一种仅从颗粒位置及其种类推断群集的无监督机器学习方法。我们将这种方法应用于三种过冷液体模型,发现它可以检测到局部有序的微妙形式,这可以通过与 Voronoi 细胞统计数据的比较来证明。最后,我们分析了结构群集与颗粒迁移率之间的时变相关性,并表明我们的方法可以捕捉到有关玻璃动力学的相关信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验