Suppr超能文献

生物甲烷是由乙酸裂解产生的,而不是直接的种间电子转移:以基因组为中心的观点和碳同位素。

Biomethane is produced by acetate cleavage, not direct interspecies electron transfer: genome-centric view and carbon isotope.

机构信息

Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China.

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.

出版信息

Bioresour Technol. 2023 Nov;387:129589. doi: 10.1016/j.biortech.2023.129589. Epub 2023 Jul 31.

Abstract

Understanding the source of methane (CH) is of great significance for improving the anaerobic fermentation efficiency in bioengineering, and for mitigating the emission potential of natural ecosystems. Microbes involved in the process named direct interspecies electron transfer coupling with CO reduction, i.e., electrons released from electroactive bacteria to reduce CO into CH, have attracted considerable attention for wastewater treatment in the past decade. However, how the synergistic effect of microbiota contributes to this anaerobic carbon metabolism accompanied by CH production still remains poorly understood, especial for wastewater with antibiotic exposure. Results show that enhancing lower-abundant acetoclastic methanogens and acetogenic bacteria, rather than electroactive bacteria, contributed to CH production, based on a metagenome-assembled genomes network analysis. Natural and artificial isotope tracing of CH further confirmed that CH mainly originated from acetoclastic methanogenesis. These findings reveal the contribution of direct acetate cleavage (acetoclastic methanogenesis) and provide insightsfor further regulation of methanogenic strategies.

摘要

理解甲烷(CH)的来源对于提高生物工程中厌氧发酵效率以及减轻自然生态系统的排放潜力具有重要意义。在过去十年中,涉及直接种间电子传递与 CO 还原耦合过程的微生物,即电子从电活性细菌释放并将 CO 还原为 CH,引起了人们对废水处理的极大关注。然而,微生物群落的协同作用如何促进这种伴随着 CH 产生的厌氧碳代谢仍然知之甚少,特别是对于接触抗生素的废水。研究结果表明,基于宏基因组组装基因组网络分析,增强低丰度的产乙酸甲烷菌和产乙酸菌,而不是电活性细菌,有助于 CH 的产生。CH 的天然和人工同位素示踪进一步证实 CH 主要来源于产乙酸甲烷生成。这些发现揭示了直接乙酸裂解(产乙酸甲烷生成)的贡献,并为进一步调控产甲烷策略提供了思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验