Suppr超能文献

在生理温度下具有可调节热响应的可生物降解弹性体的 4D 打印。

4D printing of biodegradable elastomers with tailorable thermal response at physiological temperature.

机构信息

Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.

Complex Materials, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.

出版信息

J Control Release. 2023 Sep;361:417-426. doi: 10.1016/j.jconrel.2023.07.053. Epub 2023 Aug 12.

Abstract

4D printing has a great potential for the manufacturing of soft robotics and medical devices. The alliance of digital light processing (DLP) 3D printing and novel shape-memory photopolymers allows for the fabrication of smart 4D-printed medical devices in high resolution and with tailorable functionalities. However, most of the reported 4D-printed materials are nondegradable, which limits their clinical applications. On the other hand, 4D printing of biodegradable shape-memory elastomers is highly challenging, especially when transition points close to physiological temperature and shape fixation under ambient conditions are required. Here, we report the 4D printing of biodegradable shape-memory elastomers with tailorable transition points covering physiological temperature, by using poly(D,L-lactide-co-trimethylene carbonate) methacrylates at various monomer feed ratios. After the programming step, the high-resolution DLP printed stents preserved their folded shape at room temperature, and showed efficient shape recovery at 37 °C. The materials were cytocompatible and readily degradable under physiological conditions. Furthermore, drug-loaded devices with tuneable release kinetics were realized by DLP-printing with resins containing polymers and levofloxacin or nintedanib. This study offers a new perspective for the development of next-generation 4D-printed medical devices.

摘要

4D 打印在软机器人和医疗器械制造方面具有巨大潜力。数字光处理(DLP)3D 打印与新型形状记忆光聚合物的结合,使得能够以高分辨率和可定制的功能制造智能 4D 打印医疗器械。然而,大多数报道的 4D 打印材料是不可降解的,这限制了它们的临床应用。另一方面,可生物降解的形状记忆弹性体的 4D 打印极具挑战性,特别是当需要接近生理温度的转变点和在环境条件下的形状固定时。在这里,我们报告了使用不同单体进料比的聚(D,L-丙交酯-共-三亚甲基碳酸酯)甲基丙烯酸酯,可打印具有可定制转变点(涵盖生理温度)的可生物降解形状记忆弹性体。在编程步骤之后,高分辨率的 DLP 打印支架在室温下保持折叠形状,并在 37°C 时显示出高效的形状恢复。这些材料具有细胞相容性,在生理条件下易于降解。此外,通过含有聚合物和左氧氟沙星或尼达尼布的树脂的 DLP 打印实现了具有可调释药动力学的载药装置。本研究为下一代 4D 打印医疗器械的发展提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验