Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, 65211, USA.
Department of Surgery, School of Medicine, University of Missouri, Columbia, 65211, USA.
Acta Biomater. 2024 Mar 15;177:165-177. doi: 10.1016/j.actbio.2024.02.009. Epub 2024 Feb 12.
Four-dimensional (4D) printing unlocks new potentials for personalized biomedical implantation, but still with hurdles of lacking suitable materials. Herein, we demonstrate a bioresorbable shape memory elastomer (SME) with high elasticity at both below and above its phase transition temperature (T). This SME can be digital light 3D printed by co-polymerizing glycerol dodecanoate acrylate prepolymer (pre-PGDA) with acrylic acid monomer to form crosslinked Poly(glycerol dodecanoate acrylate) (PGDA)-Polyacrylic acid (PAA), or PGDA-PAA network. The printed complex, free-standing 3D structures with high-resolution features exhibit shape programming properties at a physiological temperature. By tuning the pre-PGDA weight ratios between 55 wt% and 70 wt%, T varies between 39.2 and 47.2 ℃ while Young's moduli (E) range 40-170 MPa below T with fractural strain (ε) of 170 %-200 %. Above T, E drops to 1-1.82 MPa which is close to those of soft tissue. Strikingly, ε of 130-180 % is still maintained. In vitro biocompatibility test on the material shows > 90 % cell proliferation and great cell attachment. In vivo vascular grafting trials underline the geometrical and mechanical adaptability of these 4D printed constructs in regenerating the aorta tissue. Biodegradation of the implants shows the possibility of their full replacement by natural tissue over time. To highlight its potential for personalized medicine, a patient-specific left atrial appendage (LAA) occluder was printed and implanted endovascularly into an in vitro heart model. STATEMENT OF SIGNIFICANCE: 4D printed shape-memory elastomer (SME) implants particularly designed and manufactured for a patient are greatly sought-after in minimally invasive surgery (MIS). Traditional shape-memory polymers used in these implants often suffer from issues like unsuitable transition temperatures, poor biocompatibility, limited 3D design complexity, and low toughness, making them unsuitable for MIS. Our new SME, with an adjustable transition temperature and enhanced toughness, is both biocompatible and naturally degradable, particularly in cardiovascular contexts. This allows implants, like biomedical scaffolds, to be programmed at room temperature and then adapt to the body's physiological conditions post-implantation. Our studies, including in vivo vascular grafts and in vitro device implantation, highlight the SME's effectiveness in aortic tissue regeneration and its promising applications in MIS.
四维度(4D)打印为个性化生物医学植入物开辟了新的潜力,但仍然存在缺乏合适材料的障碍。在此,我们展示了一种具有高弹性的生物可吸收形状记忆弹性体(SME),其弹性在其相变温度(T)以下和以上均表现出色。这种 SME 可以通过共聚甘油十二烷酸丙烯酸酯预聚物(预-PGDA)与丙烯酸单体来数字光 3D 打印,形成交联的聚(甘油十二烷酸丙烯酸酯)(PGDA)-聚丙烯酸(PAA)或 PGDA-PAA 网络。打印的复杂、独立的 3D 结构具有高分辨率特征,在生理温度下表现出形状编程特性。通过调整预-PGDA 重量比在 55wt%和 70wt%之间,T 在 39.2℃和 47.2℃之间变化,而 Young's 模量(E)在 T 以下范围为 40-170MPa,断裂应变(ε)为 170%-200%。高于 T 时,E 降至 1-1.82MPa,接近软组织的 E 值。引人注目的是,ε 仍保持在 130%-180%之间。对该材料的体外生物相容性测试表明,细胞增殖率>90%,细胞附着良好。体内血管移植试验强调了这些 4D 打印结构在再生主动脉组织中的几何和机械适应性。植入物的降解表明,随着时间的推移,它们有可能被天然组织完全替代。为了突出其在个性化医学中的潜力,我们打印了一个特定于患者的左心耳(LAA)封堵器,并将其经血管内植入到体外心脏模型中。 意义声明:为患者专门设计和制造的 4D 打印形状记忆弹性体(SME)植入物在微创手术(MIS)中备受关注。这些植入物中使用的传统形状记忆聚合物通常存在不合适的转变温度、较差的生物相容性、有限的 3D 设计复杂性和低韧性等问题,不适合 MIS。我们的新型 SME 具有可调节的转变温度和增强的韧性,具有生物相容性和可自然降解性,特别是在心血管环境中。这使得植入物(如生物医学支架)可以在室温下编程,然后在植入后适应身体的生理条件。我们的研究包括体内血管移植物和体外装置植入,突出了 SME 在主动脉组织再生中的有效性及其在 MIS 中的应用前景。