Suppr超能文献

控制总体预期损失的多重假设检验的最优检验程序。

Optimal test procedures for multiple hypotheses controlling the familywise expected loss.

机构信息

Statistical Methodology, Novartis Pharma AG, Basel, Switzerland.

Section for Medical Statistics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria.

出版信息

Biometrics. 2023 Dec;79(4):2781-2793. doi: 10.1111/biom.13907. Epub 2023 Aug 2.

Abstract

We consider the problem of testing multiple null hypotheses, where a decision to reject or retain must be made for each one and embedding incorrect decisions into a real-life context may inflict different losses. We argue that traditional methods controlling the Type I error rate may be too restrictive in this situation and that the standard familywise error rate may not be appropriate. Using a decision-theoretic approach, we define suitable loss functions for a given decision rule, where incorrect decisions can be treated unequally by assigning different loss values. Taking expectation with respect to the sampling distribution of the data allows us to control the familywise expected loss instead of the conventional familywise error rate. Different loss functions can be adopted, and we search for decision rules that satisfy certain optimality criteria within a broad class of decision rules for which the expected loss is bounded by a fixed threshold under any parameter configuration. We illustrate the methods with the problem of establishing efficacy of a new medicinal treatment in non-overlapping subgroups of patients.

摘要

我们考虑了同时检验多个零假设的问题,对于每个假设都必须做出接受或拒绝的决定,而将错误的决定嵌入现实环境中可能会造成不同的损失。我们认为,在这种情况下,传统的控制第一类错误率的方法可能过于严格,标准的总体错误率可能并不合适。我们使用决策理论的方法,为给定的决策规则定义了合适的损失函数,其中可以通过赋予不同的损失值来对待不正确的决策。通过对数据的抽样分布进行期望,我们可以控制总体预期损失,而不是传统的总体错误率。可以采用不同的损失函数,我们在一个广泛的决策规则类别中搜索满足某些最优性准则的决策规则,对于任何参数配置,该决策规则的期望损失都被限制在固定的阈值内。我们通过新药物治疗在患者非重叠亚组中建立疗效的问题来说明这些方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验