Suppr超能文献

遗传性转甲状腺素蛋白淀粉样变性病发病年龄预测的临床模型。

Clinical model for Hereditary Transthyretin Amyloidosis age of onset prediction.

作者信息

Pedroto Maria, Coelho Teresa, Jorge Alípio, Mendes-Moreira João

机构信息

Laboratory of Artificial Intelligence and Decision Support (LIAAD), Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal.

Department of Computer Science (DCC), Faculty of Sciences (FCUP), University of Porto, Porto, Portugal.

出版信息

Front Neurol. 2023 Jul 17;14:1216214. doi: 10.3389/fneur.2023.1216214. eCollection 2023.

Abstract

INTRODUCTION

Hereditary transthyretin amyloidosis (ATTRv amyloidosis) is a rare neurological hereditary disease clinically characterized as severe, progressive, and life-threatening while the age of onset represents the moment in time when the first symptoms are felt. In this study, we present and discuss our results on the study, development, and evaluation of an approach that allows for time-to-event prediction of the age of onset, while focusing on genealogical feature construction.

MATERIALS AND METHODS

This research was triggered by the need to answer the medical problem of when will an asymptomatic ATTRv patient show symptoms of the disease. To do so, we defined and studied the impact of 77 features (ranging from demographic and genealogical to familial disease history) we studied and compared a pool of prediction algorithms, namely, linear regression (LR), elastic net (EN), lasso (LA), ridge (RI), support vector machines (SV), decision tree (DT), random forest (RF), and XGboost (XG), both in a classification as well as a regression setting; we assembled a baseline (BL) which corresponds to the current medical knowledge of the disease; we studied the problem of predicting the age of onset of ATTRv patients; we assessed the viability of predicting age of onset on short term horizons, with a classification framing, on localized sets of patients (currently symptomatic and asymptomatic carriers, with and without genealogical information); and we compared the results with an out-of-bag evaluation set and assembled in a different time-frame than the original data in order to account for data leakage.

RESULTS

Currently, we observe that our approach outperforms the BL model, which follows a set of clinical heuristics and represents current medical practice. Overall, our results show the supremacy of SV and XG for both the prediction tasks although impacted by data characteristics, namely, the existence of missing values, complex data, and small-sized available inputs.

DISCUSSION

With this study, we defined a predictive model approach capable to be well-understood by medical professionals, compared with the current practice, namely, the baseline approach (BL), and successfully showed the improvement achieved to the current medical knowledge.

摘要

引言

遗传性转甲状腺素蛋白淀粉样变性病(ATTRv淀粉样变性)是一种罕见的神经遗传性疾病,临床特征为严重、进行性且危及生命,而发病年龄是指首次出现症状的时间点。在本研究中,我们展示并讨论了关于一种方法的研究、开发和评估结果,该方法能够对发病年龄进行事件发生时间预测,同时侧重于系谱特征构建。

材料与方法

本研究源于需要回答无症状ATTRv患者何时会出现疾病症状这一医学问题。为此,我们定义并研究了77个特征(从人口统计学和系谱学到家族病史)的影响,研究并比较了一系列预测算法,即线性回归(LR)、弹性网络(EN)、套索回归(LA)、岭回归(RI)、支持向量机(SV)、决策树(DT)、随机森林(RF)和极端梯度提升(XG),包括分类和回归设置;我们构建了一个与该疾病当前医学知识相对应的基线(BL);我们研究了预测ATTRv患者发病年龄的问题;我们评估了在短期范围内,采用分类框架,对局部患者集(目前有症状和无症状携带者,有无系谱信息)预测发病年龄的可行性;我们将结果与袋外评估集进行比较,并在与原始数据不同的时间框架内进行汇总,以考虑数据泄露问题。

结果

目前,我们观察到我们的方法优于遵循一组临床启发式方法并代表当前医学实践的BL模型。总体而言,我们的结果表明,尽管受到数据特征(即存在缺失值、复杂数据和小尺寸可用输入)的影响,但SV和XG在两个预测任务中表现最为出色。

讨论

通过本研究,我们定义了一种预测模型方法,与当前实践即基线方法(BL)相比,该方法能够被医学专业人员很好地理解,并成功展示了相对于当前医学知识所取得的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0ac/10393122/6d641d8804cd/fneur-14-1216214-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验