Suppr超能文献

从比森砷烷的结构和生物合成看放线菌中的砷二次代谢。

Insights into Arsenic Secondary Metabolism in Actinomycetes from the Structure and Biosynthesis of Bisenarsan.

机构信息

Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan.

Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan.

出版信息

J Am Chem Soc. 2023 Aug 16;145(32):17863-17871. doi: 10.1021/jacs.3c04978. Epub 2023 Aug 3.

Abstract

The unique bioactivities of arsenic-containing secondary metabolites have been revealed recently, but studies on arsenic secondary metabolism in microorganisms have been extremely limited. Here, we focused on the organoarsenic metabolite with an unknown chemical structure, named bisenarsan, produced by well-studied model actinomycetes and elucidated its structure by combining feeding of the putative biosynthetic precursor (2-hydroxyethyl)arsonic acid to 1326 and detailed NMR analyses. Bisenarsan is the first characterized actinomycete-derived arsenic secondary metabolite and may function as a prototoxin form of an antibacterial agent or be a detoxification product of inorganic arsenic species. We also verified the previously proposed genes responsible for bisenarsan biosynthesis, especially the (2-hydroxyethyl)arsonic acid moiety. Notably, we suggest that a C-As bond in bisenarsan is formed by the intramolecular rearrangement of a pentavalent arsenic species (arsenoenolpyruvate) by the cofactor-independent phosphoglycerate mutase homologue BsnN, that is entirely distinct from the conventional biological C-As bond formation through As-alkylation of trivalent arsenic species by -adenosylmethionine-dependent enzymes. Our findings will speed up the development of arsenic natural product biosynthesis.

摘要

最近揭示了含砷次生代谢物的独特生物活性,但微生物中砷次生代谢的研究极为有限。在这里,我们专注于由研究充分的模式放线菌产生的具有未知化学结构的有机砷代谢物,双硒砷,通过结合将假定生物合成前体(2-羟乙基)砷酸喂食到 1326 并进行详细的 NMR 分析来阐明其结构。双硒砷是第一个被表征的放线菌衍生的砷次生代谢物,可能作为一种抗菌剂的原毒素形式,或者是无机砷物种的解毒产物。我们还验证了先前提出的负责双硒砷生物合成的基因,特别是(2-羟乙基)砷酸部分。值得注意的是,我们提出双硒砷中的 C-As 键是由五价砷物种(砷烯醇丙酮酸)通过辅助因子独立的磷酸甘油酸变位酶同源物 BsnN 的分子内重排形成的,这与通过 - 腺嘌呤依赖性酶的三价砷物种的 As-烷基化形成常规的生物 C-As 键完全不同。我们的发现将加速砷天然产物生物合成的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验