Suppr超能文献

皮肤科医生与人工智能对皮肤镜诊断的信心:可能影响决策的互补信息。

Dermatologist versus artificial intelligence confidence in dermoscopy diagnosis: Complementary information that may affect decision-making.

机构信息

IDLab, Department of Information Technology, Ghent University-IMEC, Ghent, Belgium.

Department of Dermatology, Ghent University Hospital, Ghent, Belgium.

出版信息

Exp Dermatol. 2023 Oct;32(10):1744-1751. doi: 10.1111/exd.14892. Epub 2023 Aug 3.

Abstract

In dermatology, deep learning may be applied for skin lesion classification. However, for a given input image, a neural network only outputs a label, obtained using the class probabilities, which do not model uncertainty. Our group developed a novel method to quantify uncertainty in stochastic neural networks. In this study, we aimed to train such network for skin lesion classification and evaluate its diagnostic performance and uncertainty, and compare the results to the assessments by a group of dermatologists. By passing duplicates of an image through such a stochastic neural network, we obtained distributions per class, rather than a single probability value. We interpreted the overlap between these distributions as the output uncertainty, where a high overlap indicated a high uncertainty, and vice versa. We had 29 dermatologists diagnose a series of skin lesions and rate their confidence. We compared these results to those of the network. The network achieved a sensitivity and specificity of 50% and 88%, comparable to the average dermatologist (respectively 68% and 73%). Higher confidence/less uncertainty was associated with better diagnostic performance both in the neural network and in dermatologists. We found no correlation between the uncertainty of the neural network and the confidence of dermatologists (R = -0.06, p = 0.77). Dermatologists should not blindly trust the output of a neural network, especially when its uncertainty is high. The addition of an uncertainty score may stimulate the human-computer interaction.

摘要

在皮肤病学中,深度学习可用于皮肤损伤分类。然而,对于给定的输入图像,神经网络仅输出使用类概率获得的标签,而不建模不确定性。我们小组开发了一种量化随机神经网络不确定性的新方法。在这项研究中,我们旨在训练这种网络进行皮肤损伤分类,并评估其诊断性能和不确定性,并将结果与一组皮肤科医生的评估进行比较。通过将图像的重复样本输入到这种随机神经网络中,我们获得了每个类别的分布,而不是单个概率值。我们将这些分布之间的重叠解释为输出不确定性,其中高重叠表示不确定性高,反之亦然。我们有 29 名皮肤科医生诊断一系列皮肤损伤并评估其置信度。我们将这些结果与网络的结果进行了比较。该网络的灵敏度和特异性分别为 50%和 88%,与平均皮肤科医生相当(分别为 68%和 73%)。在神经网络和皮肤科医生中,更高的置信度/更小的不确定性与更好的诊断性能相关。我们没有发现神经网络的不确定性与皮肤科医生的置信度之间存在相关性(R= -0.06,p= 0.77)。皮肤科医生不应盲目信任神经网络的输出,尤其是当它的不确定性很高时。添加不确定性分数可能会刺激人机交互。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验