Suppr超能文献

下一代神经场模型中的周期解。

Periodic solutions in next generation neural field models.

机构信息

School of Mathematical and Computational Sciences, Massey University, Private Bag 102-904 NSMC, Auckland, New Zealand.

Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany.

出版信息

Biol Cybern. 2023 Oct;117(4-5):259-274. doi: 10.1007/s00422-023-00969-6. Epub 2023 Aug 3.

Abstract

We consider a next generation neural field model which describes the dynamics of a network of theta neurons on a ring. For some parameters the network supports stable time-periodic solutions. Using the fact that the dynamics at each spatial location are described by a complex-valued Riccati equation we derive a self-consistency equation that such periodic solutions must satisfy. We determine the stability of these solutions, and present numerical results to illustrate the usefulness of this technique. The generality of this approach is demonstrated through its application to several other systems involving delays, two-population architecture and networks of Winfree oscillators.

摘要

我们考虑了下一代神经场模型,该模型描述了环形上θ神经元网络的动力学。对于某些参数,网络支持稳定的时间周期性解。利用每个空间位置的动力学由复值Riccati 方程描述的事实,我们推导出这样的周期性解必须满足的自洽方程。我们确定了这些解的稳定性,并给出了数值结果来说明该技术的有效性。通过将该方法应用于涉及延迟、两群结构和Winfree 振荡器网络的几个其他系统,证明了该方法的通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2a/10600056/7d994f4a7eb8/422_2023_969_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验