Suppr超能文献

脉冲形状和电压依赖性在尖峰神经元网络中的同步。

Pulse Shape and Voltage-Dependent Synchronization in Spiking Neuron Networks.

机构信息

Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018, Barcelona, Spain

出版信息

Neural Comput. 2024 Jul 19;36(8):1476-1540. doi: 10.1162/neco_a_01680.

Abstract

Pulse-coupled spiking neural networks are a powerful tool to gain mechanistic insights into how neurons self-organize to produce coherent collective behavior. These networks use simple spiking neuron models, such as the θ-neuron or the quadratic integrate-and-fire (QIF) neuron, that replicate the essential features of real neural dynamics. Interactions between neurons are modeled with infinitely narrow pulses, or spikes, rather than the more complex dynamics of real synapses. To make these networks biologically more plausible, it has been proposed that they must also account for the finite width of the pulses, which can have a significant impact on the network dynamics. However, the derivation and interpretation of these pulses are contradictory, and the impact of the pulse shape on the network dynamics is largely unexplored. Here, I take a comprehensive approach to pulse coupling in networks of QIF and θ-neurons. I argue that narrow pulses activate voltage-dependent synaptic conductances and show how to implement them in QIF neurons such that their effect can last through the phase after the spike. Using an exact low-dimensional description for networks of globally coupled spiking neurons, I prove for instantaneous interactions that collective oscillations emerge due to an effective coupling through the mean voltage. I analyze the impact of the pulse shape by means of a family of smooth pulse functions with arbitrary finite width and symmetric or asymmetric shapes. For symmetric pulses, the resulting voltage coupling is not very effective in synchronizing neurons, but pulses that are slightly skewed to the phase after the spike readily generate collective oscillations. The results unveil a voltage-dependent spike synchronization mechanism at the heart of emergent collective behavior, which is facilitated by pulses of finite width and complementary to traditional synaptic transmission in spiking neuron networks.

摘要

脉冲耦合尖峰神经网络是一种强大的工具,可以深入了解神经元如何自我组织以产生连贯的集体行为。这些网络使用简单的尖峰神经元模型,如θ神经元或二次积分和放电(QIF)神经元,复制真实神经动力学的基本特征。神经元之间的相互作用通过无限窄的脉冲或尖峰建模,而不是真实突触的更复杂动力学。为了使这些网络在生物学上更合理,有人提出它们还必须考虑到脉冲的有限宽度,这对网络动力学有重大影响。然而,这些脉冲的推导和解释是相互矛盾的,脉冲形状对网络动力学的影响在很大程度上还没有得到探索。在这里,我对 QIF 和θ神经元网络中的脉冲耦合采取了综合的方法。我认为,窄脉冲会激活电压依赖性突触电导,并展示如何在 QIF 神经元中实现它们,以便它们的效应可以持续到尖峰之后的相位。使用全局耦合尖峰神经元的精确低维描述,我证明了对于瞬时相互作用,由于通过平均电压的有效耦合,会出现集体振荡。我通过具有任意有限宽度和对称或不对称形状的一系列光滑脉冲函数来分析脉冲形状的影响。对于对称脉冲,对神经元的同步作用不是很有效,但稍微偏向尖峰之后相位的脉冲很容易产生集体振荡。这些结果揭示了一种在新兴集体行为核心的电压依赖性尖峰同步机制,它由有限宽度的脉冲促进,并与尖峰神经元网络中的传统突触传递互补。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验