IEEE Trans Biomed Eng. 2024 Jan;71(1):343-354. doi: 10.1109/TBME.2023.3301730. Epub 2023 Dec 22.
A fully automated artificial pancreas requires a meal estimator and predictions of blood glucose levels (BGL) to handle disturbances during meal times, all without relying on manual meal announcements and user interventions. This study introduces a technique for estimating the glucose appearance rate (GAR) and predicting BGL in people with type 1 diabetes and insulin and glucagon administration. It is demonstrated for intraperitoneal insulin and glucagon delivery but may be adapted to other delivery sites.
The estimator is designed based on the moving horizon estimation (MHE) approach, where the underlying cost function incorporates prior statistical information on the GAR in subjects over the course of a day. The proposed prediction scheme is developed to predict GAR using estimated states and an intestinal model, which is then used to predict BGL with the help of an animal glucose metabolic model.
The intraperitoneal dual-hormone estimator was evaluated on three anesthetized animals, achieving a 21.8% mean absolute percentage error (MAPE) for GAR estimation and a 10.0% MAPE for BGL prediction when the future GAR is known. For a 120-minute prediction horizon, the proposed predictor achieved an 18.0% MAPE for GAR and a 28.4% MAPE for BGL.
The findings demonstrate the effectiveness and reliability of the proposed estimator and its potential for use in a fully automated artificial pancreas and reducing user interventions.
This study represents advancements toward the development of a fully automated artificial pancreas, ultimately enhancing the quality of life for people with type 1 diabetes.
全自动化人工胰腺需要一个膳食估算器和血糖水平(BGL)预测功能,以处理用餐期间的干扰,而无需依赖手动膳食通告和用户干预。本研究介绍了一种用于估算 1 型糖尿病患者和胰岛素及胰高血糖素给药时葡萄糖出现率(GAR)和预测 BGL 的技术。该技术已在腹腔内胰岛素和胰高血糖素给药中得到验证,但也可适用于其他给药部位。
估算器是基于移动 horizon 估计(MHE)方法设计的,其中基础成本函数包含了受试者在一天中 GAR 的先前统计信息。所提出的预测方案用于使用估计状态和肠道模型预测 GAR,然后借助动物葡萄糖代谢模型预测 BGL。
在 3 只麻醉动物上评估了腹腔双激素估算器,当未来 GAR 已知时,GAR 估计的平均绝对百分比误差(MAPE)为 21.8%,BGL 预测的 MAPE 为 10.0%。对于 120 分钟的预测范围,所提出的预测器在 GAR 方面的 MAPE 为 18.0%,在 BGL 方面的 MAPE 为 28.4%。
研究结果表明,所提出的估算器及其在全自动化人工胰腺中的应用潜力具有有效性和可靠性,可减少用户干预。
本研究代表了朝着开发全自动化人工胰腺的方向取得了进展,最终提高了 1 型糖尿病患者的生活质量。