Suppr超能文献

基于多波长激发荧光光谱法的荧光团稳健估计显式基线模型。

An Explicit Estimated Baseline Model for Robust Estimation of Fluorophores Using Multiple-Wavelength Excitation Fluorescence Spectroscopy.

出版信息

IEEE Trans Biomed Eng. 2024 Jan;71(1):295-306. doi: 10.1109/TBME.2023.3299689. Epub 2023 Dec 22.

Abstract

Spectroscopy is a popular technique for identifying and quantifying fluorophores in fluorescent materials. However, quantifying the fluorophore of interest can be challenging when the material also contains other fluorophores (baseline), particularly if the emission spectrum of the baseline is not well-defined and overlaps with that of the fluorophore of interest. In this work, we propose a method that is free from any prior assumptions about the baseline by utilizing fluorescence signals at multiple excitation wavelengths. Despite the nonlinearity of the model, a closed-form expression of the least squares estimator is also derived. To evaluate our method, we consider the practical case of estimating the contributions of two forms of protoporphyrin IX (PpIX) in a fluorescence signal. This fluorophore of interest is commonly utilized in neuro-oncology operating rooms to distinguish the boundary between healthy and tumor tissue in a type of brain tumor known as glioma. Using a digital phantom calibrated with clinical and experimental data, we demonstrate that our method is more robust than current state-of-the-art methods for classifying pathological status, particularly when applied to images of simulated clinical gliomas. To account for the high variability in the baseline, we are examining various scenarios and their corresponding outcomes. In particular, it maintains the ability to distinguish between healthy and tumor tissue with an accuracy of up to 87%, while the ability of existing methods drops near 0%.

摘要

光谱学是一种用于识别和定量荧光材料中荧光团的常用技术。然而,当材料中还含有其他荧光团(本底)时,定量感兴趣的荧光团可能会具有挑战性,特别是如果本底的发射光谱没有明确定义并且与感兴趣的荧光团的发射光谱重叠时。在这项工作中,我们提出了一种无需对本底做出任何先验假设的方法,该方法利用了多个激发波长的荧光信号。尽管模型是非线性的,但也推导出了最小二乘估计器的封闭形式表达式。为了评估我们的方法,我们考虑了在荧光信号中估计两种原卟啉 IX(PpIX)形式的贡献的实际情况。这种感兴趣的荧光团通常在神经肿瘤学手术室中用于区分称为神经胶质瘤的一种脑肿瘤中健康组织和肿瘤组织之间的边界。使用经过临床和实验数据校准的数字体模,我们证明了我们的方法比当前用于分类病理状态的最先进方法更稳健,特别是在应用于模拟临床神经胶质瘤的图像时。为了考虑本底的高度可变性,我们正在研究各种情况及其相应的结果。特别是,它能够以高达 87%的准确率区分健康组织和肿瘤组织,而现有方法的区分能力接近 0%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验