Suppr超能文献

多发性硬化症与语义记忆结构的差异有关。

Multiple sclerosis is associated with differences in semantic memory structure.

机构信息

Laboratory for Cognition and Neural Stimulation, University of Pennsylvania.

Department of Psychology, Pennsylvania State University.

出版信息

Neuropsychology. 2024 Jan;38(1):42-57. doi: 10.1037/neu0000924. Epub 2023 Aug 3.

Abstract

OBJECTIVE

Although language is often considered to be largely intact in multiple sclerosis (MS), word-finding difficulties are a common complaint. Recent work suggests that declines in language are not solely the result of motoric and cognitive slowing that is most strongly associated with MS. Network science approaches have been effectively used to examine network structure as it relates to clinical conditions, aging, and language. The present study utilizes a network science approach to investigate whether individuals with MS exhibit less interconnected and resilient semantic networks compared to age-matched neurotypical peers.

METHOD

We used semantic fluency data from 89 participants with MS and 88 neurotypical participants to estimate and analyze the semantic network structure for each participant group. Additionally, we conducted a percolation analysis to examine the resilience of each network.

RESULTS

Network measures showed that individuals with MS had lower local and global clustering coefficients, longer average shortest path lengths, and higher modularity values compared to neurotypical peers. Small-worldness, network portrait divergence measures, and community detection analyses were consistent with these results and indicated that macroscopic properties of the two networks differed and that the semantic network for individuals with MS was more fractured than the neurotypical peer network. Moreover, a spreading activation simulation and percolation analysis suggested that the semantic networks of individuals with MS are less flexible and activation degrades faster than those of age-matched neurotypical participants.

CONCLUSIONS

These differing semantic network structures suggest that language retrieval difficulties in MS partially result from decline in language-specific factors. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

目的

尽管语言在多发性硬化症(MS)中通常被认为基本完整,但找词困难是常见的主诉。最近的研究表明,语言的衰退不仅仅是与 MS 最密切相关的运动和认知减速的结果。网络科学方法已被有效地用于研究网络结构与临床状况、衰老和语言的关系。本研究采用网络科学方法,调查与年龄匹配的神经典型同龄人相比,MS 患者是否表现出语义网络连接性降低和弹性降低。

方法

我们使用 89 名 MS 患者和 88 名神经典型参与者的语义流畅性数据来估计和分析每个参与者组的语义网络结构。此外,我们进行了渗流分析以检查每个网络的弹性。

结果

网络指标表明,与神经典型同龄人相比,MS 患者的局部和全局聚类系数较低,平均最短路径长度较长,模块度值较高。小世界性、网络肖像发散度测量和社区检测分析与这些结果一致,表明两个网络的宏观性质不同,MS 患者的语义网络比神经典型患者的网络更破碎。此外,扩散激活模拟和渗流分析表明,MS 患者的语义网络灵活性较低,激活退化速度比年龄匹配的神经典型参与者快。

结论

这些不同的语义网络结构表明,MS 中的语言检索困难部分是由于语言特定因素的下降所致。

相似文献

1
Multiple sclerosis is associated with differences in semantic memory structure.
Neuropsychology. 2024 Jan;38(1):42-57. doi: 10.1037/neu0000924. Epub 2023 Aug 3.
2
Age differences in semantic network structure: Acquiring knowledge shapes semantic memory.
Psychol Aging. 2023 Mar;38(2):87-102. doi: 10.1037/pag0000721. Epub 2023 Jan 23.
3
The analysis of semantic networks in multiple sclerosis identifies preferential damage of long-range connectivity.
Mult Scler Relat Disord. 2015 Sep;4(5):387-394. doi: 10.1016/j.msard.2015.07.002. Epub 2015 Jul 8.
4
How retrieval processes change with age: Exploring age differences in semantic network and retrieval dynamics.
Can J Exp Psychol. 2025 Mar;79(1):109-123. doi: 10.1037/cep0000332. Epub 2024 Jul 25.
5
Quantifying flexibility in thought: The resiliency of semantic networks differs across the lifespan.
Cognition. 2021 Jun;211:104631. doi: 10.1016/j.cognition.2021.104631. Epub 2021 Feb 24.
7
Characterization of language abilities and semantic networks in very preterm children at school-age.
PLoS One. 2025 Jan 29;20(1):e0317535. doi: 10.1371/journal.pone.0317535. eCollection 2025.
9
Graph Theory Analysis of Semantic Fluency in Russian-English Bilinguals.
Cogn Behav Neurol. 2022 Sep 1;35(3):179-187. doi: 10.1097/WNN.0000000000000312.
10
Dynamics of second-language learners' semantic memory networks: Evidence from a snowball sampling paradigm.
Can J Exp Psychol. 2025 Mar;79(1):98-108. doi: 10.1037/cep0000350. Epub 2024 Oct 17.

本文引用的文献

1
"It's on the tip of my tongue!" exploring confrontation naming difficulties in patients with multiple sclerosis.
Mult Scler Relat Disord. 2023 Mar;71:104579. doi: 10.1016/j.msard.2023.104579. Epub 2023 Feb 14.
2
Age differences in semantic network structure: Acquiring knowledge shapes semantic memory.
Psychol Aging. 2023 Mar;38(2):87-102. doi: 10.1037/pag0000721. Epub 2023 Jan 23.
3
Structural differences in the semantic networks of younger and older adults.
Sci Rep. 2022 Dec 12;12(1):21459. doi: 10.1038/s41598-022-11698-4.
4
Cerebral White Matter Mediation of Age-Related Differences in Picture Naming Across Adulthood.
Neurobiol Lang (Camb). 2022 Mar 30;3(2):272-286. doi: 10.1162/nol_a_00065. eCollection 2022 Mar.
5
Using Network Science and Psycholinguistic Megastudies to Examine the Dimensions of Phonological Similarity.
Lang Speech. 2023 Mar;66(1):143-174. doi: 10.1177/00238309221095455. Epub 2022 May 18.
6
Semantic network analysis (SemNA): A tutorial on preprocessing, estimating, and analyzing semantic networks.
Psychol Methods. 2023 Aug;28(4):860-879. doi: 10.1037/met0000463. Epub 2021 Dec 23.
7
Is the Mind a Network? Maps, Vehicles, and Skyhooks in Cognitive Network Science.
Top Cogn Sci. 2022 Jan;14(1):189-208. doi: 10.1111/tops.12570. Epub 2021 Aug 26.
8
Is computerized screening for processing speed impairment sufficient for identifying MS-related cognitive impairment in a clinical setting?
Mult Scler Relat Disord. 2021 Sep;54:103106. doi: 10.1016/j.msard.2021.103106. Epub 2021 Jun 23.
9
What Can Network Science Tell Us About Phonology and Language Processing?
Top Cogn Sci. 2022 Jan;14(1):127-142. doi: 10.1111/tops.12532. Epub 2021 Apr 9.
10
Quantifying flexibility in thought: The resiliency of semantic networks differs across the lifespan.
Cognition. 2021 Jun;211:104631. doi: 10.1016/j.cognition.2021.104631. Epub 2021 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验