Suppr超能文献

基于 StyleGAN2 的模型自适应技术的无监督裂唇畸形评估。

Unsupervised anomaly appraisal of cleft faces using a StyleGAN2-based model adaptation technique.

机构信息

Electrical and Computer Engineering Department, Texas A&M University, College Station, TX, United States of America.

Electrical and Computer Engineering Program, Texas A&M University, Doha, Qatar.

出版信息

PLoS One. 2023 Aug 3;18(8):e0288228. doi: 10.1371/journal.pone.0288228. eCollection 2023.

Abstract

A novel machine learning framework that is able to consistently detect, localize, and measure the severity of human congenital cleft lip anomalies is introduced. The ultimate goal is to fill an important clinical void: to provide an objective and clinically feasible method of gauging baseline facial deformity and the change obtained through reconstructive surgical intervention. The proposed method first employs the StyleGAN2 generative adversarial network with model adaptation to produce a normalized transformation of 125 faces, and then uses a pixel-wise subtraction approach to assess the difference between all baseline images and their normalized counterparts (a proxy for severity of deformity). The pipeline of the proposed framework consists of the following steps: image preprocessing, face normalization, color transformation, heat-map generation, morphological erosion, and abnormality scoring. Heatmaps that finely discern anatomic anomalies visually corroborate the generated scores. The proposed framework is validated through computer simulations as well as by comparison of machine-generated versus human ratings of facial images. The anomaly scores yielded by the proposed computer model correlate closely with human ratings, with a calculated Pearson's r score of 0.89. The proposed pixel-wise measurement technique is shown to more closely mirror human ratings of cleft faces than two other existing, state-of-the-art image quality metrics (Learned Perceptual Image Patch Similarity and Structural Similarity Index). The proposed model may represent a new standard for objective, automated, and real-time clinical measurement of faces affected by congenital cleft deformity.

摘要

介绍了一种新颖的机器学习框架,该框架能够持续检测、定位和测量人类先天性唇裂畸形的严重程度。最终目标是填补一个重要的临床空白:提供一种客观且在临床可行的方法来衡量基线面部畸形以及通过重建性手术干预获得的变化。该方法首先采用 StyleGAN2 生成对抗网络进行模型适配,生成 125 张脸的归一化变换,然后采用逐像素减法方法评估所有基线图像与其归一化对应图像之间的差异(代表畸形严重程度的代理)。所提出的框架的流程包括以下步骤:图像预处理、人脸归一化、颜色转换、热图生成、形态学侵蚀和异常评分。热图可以直观地辨别解剖异常,从而证实生成的评分。通过计算机模拟以及对机器生成的人脸图像与人类评分的比较,对所提出的框架进行了验证。所提出的计算机模型生成的异常评分与人类评分密切相关,计算得出的 Pearson r 得分为 0.89。所提出的逐像素测量技术比另外两种现有的最先进的图像质量指标(学习感知图像补丁相似性和结构相似性指数)更能反映出对裂唇的人类评分。所提出的模型可能代表了一种客观、自动和实时临床测量受先天性裂畸形影响的面部的新标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa3/10399833/9c4674c75b33/pone.0288228.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验