IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4217-4228. doi: 10.1109/TPAMI.2020.2970919. Epub 2021 Nov 3.
We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.
我们提出了一种生成对抗网络的替代生成器架构,借鉴了风格转换文献。新的架构导致了高级属性(例如,在训练人脸时的姿势和身份)和生成图像中的随机变化(例如,雀斑,头发)的自动学习,无需监督,并实现了直观的、特定于比例的合成控制。新的生成器在传统分布质量指标方面提高了现有技术水平,导致了明显更好的插值特性,并且还更好地分离了潜在的变化因素。为了量化插值质量和分离度,我们提出了两种新的自动化方法,适用于任何生成器架构。最后,我们引入了一个新的、高度多样化和高质量的人脸数据集。
IEEE Trans Pattern Anal Mach Intell. 2021-12
Neural Netw. 2020-4-9
IEEE Trans Image Process. 2018-9-12
Comput Methods Programs Biomed. 2020-12
Neural Netw. 2020-7-13
Front Neurorobot. 2022-1-21
Med Image Anal. 2021-8
Bioengineering (Basel). 2025-7-15