文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于风格的生成对抗网络生成器架构。

A Style-Based Generator Architecture for Generative Adversarial Networks.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4217-4228. doi: 10.1109/TPAMI.2020.2970919. Epub 2021 Nov 3.


DOI:10.1109/TPAMI.2020.2970919
PMID:32012000
Abstract

We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.

摘要

我们提出了一种生成对抗网络的替代生成器架构,借鉴了风格转换文献。新的架构导致了高级属性(例如,在训练人脸时的姿势和身份)和生成图像中的随机变化(例如,雀斑,头发)的自动学习,无需监督,并实现了直观的、特定于比例的合成控制。新的生成器在传统分布质量指标方面提高了现有技术水平,导致了明显更好的插值特性,并且还更好地分离了潜在的变化因素。为了量化插值质量和分离度,我们提出了两种新的自动化方法,适用于任何生成器架构。最后,我们引入了一个新的、高度多样化和高质量的人脸数据集。

相似文献

[1]
A Style-Based Generator Architecture for Generative Adversarial Networks.

IEEE Trans Pattern Anal Mach Intell. 2021-12

[2]
Generative adversarial networks with decoder-encoder output noises.

Neural Netw. 2020-4-9

[3]
Gated-GAN: Adversarial Gated Networks for Multi-Collection Style Transfer.

IEEE Trans Image Process. 2018-9-12

[4]
Deep learning can generate traditional retinal fundus photographs using ultra-widefield images via generative adversarial networks.

Comput Methods Programs Biomed. 2020-12

[5]
Unsupervised Discovery, Control, and Disentanglement of Semantic Attributes With Applications to Anomaly Detection.

Neural Comput. 2021-3

[6]
Improving Deep Interactive Evolution with a Style-Based Generator for Artistic Expression and Creative Exploration.

Entropy (Basel). 2020-12-24

[7]
Investigating object compositionality in Generative Adversarial Networks.

Neural Netw. 2020-7-13

[8]
3D conditional generative adversarial networks for high-quality PET image estimation at low dose.

Neuroimage. 2018-3-20

[9]
ShapeEditor: A StyleGAN Encoder for Stable and High Fidelity Face Swapping.

Front Neurorobot. 2022-1-21

[10]
Conditional generation of medical images via disentangled adversarial inference.

Med Image Anal. 2021-8

引用本文的文献

[1]
Research of text paraphrase generation based on self-contrastive learning.

PLoS One. 2025-9-2

[2]
A comprehensive survey of deep face verification systems adversarial attacks and defense strategies.

Sci Rep. 2025-8-22

[3]
Design of Realistic and Artistically Expressive 3D Facial Models for Film AIGC: A Cross-Modal Framework Integrating Audience Perception Evaluation.

Sensors (Basel). 2025-7-26

[4]
Implementation of a Conditional Latent Diffusion-Based Generative Model to Synthetically Create Unlabeled Histopathological Images.

Bioengineering (Basel). 2025-7-15

[5]
Developing an artificial intelligence-based progressive growing GAN for high-quality facial profile generation and evaluation through turing test and aesthetic analysis.

Sci Rep. 2025-7-22

[6]
DASFormer: self-supervised pretraining for earthquake monitoring.

Vis Intell. 2025

[7]
Artificial Intelligence-Enabled Facial Privacy Protection for Ocular Diagnosis: Development and Validation Study.

J Med Internet Res. 2025-7-9

[8]
DSF-YOLO for robust multiscale traffic sign detection under adverse weather conditions.

Sci Rep. 2025-7-8

[9]
A simple preprocessing approach for improving semantic segmentation in unsupervised domain adaptation.

Sci Rep. 2025-7-1

[10]
Integration of multiple coinflip devices for high-quality random sampling.

Sci Rep. 2025-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索