Suppr超能文献

无监督的胸部 X 射线异常检测。

Unsupervised Deep Anomaly Detection in Chest Radiographs.

机构信息

Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.

Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.

出版信息

J Digit Imaging. 2021 Apr;34(2):418-427. doi: 10.1007/s10278-020-00413-2. Epub 2021 Feb 8.

Abstract

The purposes of this study are to propose an unsupervised anomaly detection method based on a deep neural network (DNN) model, which requires only normal images for training, and to evaluate its performance with a large chest radiograph dataset. We used the auto-encoding generative adversarial network (α-GAN) framework, which is a combination of a GAN and a variational autoencoder, as a DNN model. A total of 29,684 frontal chest radiographs from the Radiological Society of North America Pneumonia Detection Challenge dataset were used for this study (16,880 male and 12,804 female patients; average age, 47.0 years). All these images were labeled as "Normal," "No Opacity/Not Normal," or "Opacity" by board-certified radiologists. About 70% (6,853/9,790) of the Normal images were randomly sampled as the training dataset, and the rest were randomly split into the validation and test datasets in a ratio of 1:2 (7,610 and 15,221). Our anomaly detection system could correctly visualize various lesions including a lung mass, cardiomegaly, pleural effusion, bilateral hilar lymphadenopathy, and even dextrocardia. Our system detected the abnormal images with an area under the receiver operating characteristic curve (AUROC) of 0.752. The AUROCs for the abnormal labels Opacity and No Opacity/Not Normal were 0.838 and 0.704, respectively. Our DNN-based unsupervised anomaly detection method could successfully detect various diseases or anomalies in chest radiographs by training with only the normal images.

摘要

本研究旨在提出一种基于深度神经网络(DNN)模型的无监督异常检测方法,该方法仅需正常图像进行训练,并使用大型胸部 X 光数据集评估其性能。我们使用自动编码生成对抗网络(α-GAN)框架作为 DNN 模型,该框架是 GAN 和变分自编码器的组合。本研究共使用了来自北美放射学会肺炎检测挑战赛数据集的 29684 张胸部正位 X 光片(男性 16880 例,女性 12804 例;平均年龄 47.0 岁)。所有这些图像均由经过董事会认证的放射科医生标记为“正常”、“无不透射线/异常”或“不透射线”。大约 70%(6853/9790)的“正常”图像被随机抽取作为训练数据集,其余的随机分为验证数据集和测试数据集,比例为 1:2(7610 张和 15221 张)。我们的异常检测系统可以正确地可视化各种病变,包括肺部肿块、心胸比增大、胸腔积液、双侧肺门淋巴结肿大,甚至右旋心。我们的系统使用受试者工作特征曲线(ROC)下面积(AUROC)为 0.752 来检测异常图像。异常标签“不透射线”和“无不透射线/异常”的 AUROC 分别为 0.838 和 0.704。我们基于 DNN 的无监督异常检测方法仅通过正常图像的训练即可成功检测胸部 X 光片中的各种疾病或异常。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76d0/8289984/d2a7e422a9a1/10278_2020_413_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验