Suppr超能文献

利用决策分析进行干预价值效率,在多阶段优化策略中选择优化干预措施。

Using decision analysis for intervention value efficiency to select optimized interventions in the multiphase optimization strategy.

机构信息

Department of Social and Behavioral Sciences, School of Global Public Health, New York University.

Department of Population Health, New York University Grossman School of Medicine.

出版信息

Health Psychol. 2024 Feb;43(2):89-100. doi: 10.1037/hea0001318. Epub 2023 Aug 3.

Abstract

OBJECTIVE

Optimizing multicomponent behavioral and biobehavioral interventions presents a complex decision problem. To arrive at an intervention that is both effective and readily implementable, it may be necessary to weigh effectiveness against implementability when deciding which components to select for inclusion. Different components may have differential effectiveness on an array of outcome variables. Moreover, different decision-makers will approach this problem with different objectives and preferences. Recent advances in decision-making methodology in the multiphase optimization strategy (MOST) have opened new possibilities for intervention scientists to optimize interventions based on a wide variety of decision-maker preferences, including those that involve multiple outcome variables. In this study, we introduce decision analysis for intervention value efficiency (DAIVE), a decision-making framework for use in MOST that incorporates these new decision-making methods. We apply DAIVE to select optimized interventions based on empirical data from a factorial optimization trial.

METHOD

We define various sets of hypothetical decision-maker preferences, and we apply DAIVE to identify optimized interventions appropriate to each case.

RESULTS

We demonstrate how DAIVE can be used to make decisions about the composition of optimized interventions and how the choice of optimized intervention can differ according to decision-maker preferences and objectives.

CONCLUSIONS

We offer recommendations for intervention scientists who want to apply DAIVE to select optimized interventions based on data from their own factorial optimization trials. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

目的

优化多成分行为和生物行为干预措施是一个复杂的决策问题。为了获得既有效又易于实施的干预措施,在决定选择哪些组件纳入时,可能需要在有效性和可实施性之间进行权衡。不同的组件可能对一系列结果变量具有不同的效果。此外,不同的决策者在解决这个问题时会有不同的目标和偏好。多阶段优化策略(MOST)中的决策方法的最新进展为干预科学家提供了新的可能性,使他们能够根据各种决策者的偏好来优化干预措施,包括那些涉及多个结果变量的偏好。在这项研究中,我们引入了干预价值效率的决策分析(DAIVE),这是一种在 MOST 中使用的决策框架,其中包含了这些新的决策方法。我们将 DAIVE 应用于基于因子优化试验的实证数据来选择优化的干预措施。

方法

我们定义了各种假设的决策者偏好集,并应用 DAIVE 来确定适用于每种情况的优化干预措施。

结果

我们展示了如何使用 DAIVE 来做出关于优化干预措施组成的决策,以及根据决策者的偏好和目标,优化干预措施的选择可以有所不同。

结论

我们为希望根据自己的因子优化试验数据应用 DAIVE 来选择优化干预措施的干预科学家提供了建议。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

相似文献

3
A posterior expected value approach to decision-making in the multiphase optimization strategy for intervention science.
Psychol Methods. 2024 Aug;29(4):656-678. doi: 10.1037/met0000569. Epub 2023 Apr 13.
7
Optimizing Interventions for Equitability: Some Initial Ideas.
Prev Sci. 2024 Jul;25(Suppl 3):384-396. doi: 10.1007/s11121-024-01644-3. Epub 2024 Jan 31.
10

引用本文的文献

2
Evidence-Based Design of Prescription Medication Information: An Updated Scoping Review.
Drug Saf. 2025 Jun;48(6):607-641. doi: 10.1007/s40264-025-01527-8. Epub 2025 Mar 13.
9
Intervention Optimization: A Paradigm Shift and Its Potential Implications for Clinical Psychology.
Annu Rev Clin Psychol. 2024 Jul;20(1):21-47. doi: 10.1146/annurev-clinpsy-080822-051119. Epub 2024 Jul 2.
10
Optimizing Interventions for Equitability: Some Initial Ideas.
Prev Sci. 2024 Jul;25(Suppl 3):384-396. doi: 10.1007/s11121-024-01644-3. Epub 2024 Jan 31.

本文引用的文献

1
Optimization Methods and Implementation Science: An Opportunity for Behavioral and Biobehavioral Interventions.
Implement Res Pract. 2021 Oct 29;2:26334895211054363. doi: 10.1177/26334895211054363. eCollection 2021 Jan-Dec.
2
A posterior expected value approach to decision-making in the multiphase optimization strategy for intervention science.
Psychol Methods. 2024 Aug;29(4):656-678. doi: 10.1037/met0000569. Epub 2023 Apr 13.
4
A Health Opportunity Cost Threshold for Cost-Effectiveness Analysis in the United States.
Ann Intern Med. 2021 Jan;174(1):25-32. doi: 10.7326/M20-1392. Epub 2020 Nov 3.
5
A New Method to Determine the Optimal Willingness to Pay in Cost-Effectiveness Analysis.
Value Health. 2019 Jul;22(7):785-791. doi: 10.1016/j.jval.2019.03.003. Epub 2019 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验