Department of Social and Behavioral Sciences, School of Global Public Health, New York University.
Department of Population Health, New York University Grossman School of Medicine.
Health Psychol. 2024 Feb;43(2):89-100. doi: 10.1037/hea0001318. Epub 2023 Aug 3.
Optimizing multicomponent behavioral and biobehavioral interventions presents a complex decision problem. To arrive at an intervention that is both effective and readily implementable, it may be necessary to weigh effectiveness against implementability when deciding which components to select for inclusion. Different components may have differential effectiveness on an array of outcome variables. Moreover, different decision-makers will approach this problem with different objectives and preferences. Recent advances in decision-making methodology in the multiphase optimization strategy (MOST) have opened new possibilities for intervention scientists to optimize interventions based on a wide variety of decision-maker preferences, including those that involve multiple outcome variables. In this study, we introduce decision analysis for intervention value efficiency (DAIVE), a decision-making framework for use in MOST that incorporates these new decision-making methods. We apply DAIVE to select optimized interventions based on empirical data from a factorial optimization trial.
We define various sets of hypothetical decision-maker preferences, and we apply DAIVE to identify optimized interventions appropriate to each case.
We demonstrate how DAIVE can be used to make decisions about the composition of optimized interventions and how the choice of optimized intervention can differ according to decision-maker preferences and objectives.
We offer recommendations for intervention scientists who want to apply DAIVE to select optimized interventions based on data from their own factorial optimization trials. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
优化多成分行为和生物行为干预措施是一个复杂的决策问题。为了获得既有效又易于实施的干预措施,在决定选择哪些组件纳入时,可能需要在有效性和可实施性之间进行权衡。不同的组件可能对一系列结果变量具有不同的效果。此外,不同的决策者在解决这个问题时会有不同的目标和偏好。多阶段优化策略(MOST)中的决策方法的最新进展为干预科学家提供了新的可能性,使他们能够根据各种决策者的偏好来优化干预措施,包括那些涉及多个结果变量的偏好。在这项研究中,我们引入了干预价值效率的决策分析(DAIVE),这是一种在 MOST 中使用的决策框架,其中包含了这些新的决策方法。我们将 DAIVE 应用于基于因子优化试验的实证数据来选择优化的干预措施。
我们定义了各种假设的决策者偏好集,并应用 DAIVE 来确定适用于每种情况的优化干预措施。
我们展示了如何使用 DAIVE 来做出关于优化干预措施组成的决策,以及根据决策者的偏好和目标,优化干预措施的选择可以有所不同。
我们为希望根据自己的因子优化试验数据应用 DAIVE 来选择优化干预措施的干预科学家提供了建议。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。