Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark.
Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America.
PLoS Biol. 2023 Aug 3;21(8):e3002217. doi: 10.1371/journal.pbio.3002217. eCollection 2023 Aug.
Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, which defines a new class of conotoxins evolutionarily related to the well-known con-ikot-ikots and 2 additional conotoxin classes not previously described. The crystal structure of recombinant Mu8.1 displays a saposin-like fold and shows structural similarity with con-ikot-ikot. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of recombinantly expressed voltage-gated ion channels, Mu8.1 displayed the highest potency against the R-type (Cav2.3) calcium channel. Ca2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of Cav2.3 and voltage-gated K+ (Kv4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing Cav2.3. Importantly, this multidisciplinary study showcases the potential of uncovering novel structures and bioactivities within the largely unexplored group of macro-conotoxins.
动物毒液肽是生物医学探索的有价值的化合物。海洋芋螺的毒液是肽毒素的一个特别丰富的来源,被称为芋螺毒素。在这里,我们鉴定了一种异常大的芋螺毒素 Mu8.1 的序列,它定义了一个与著名的 con-ikot-ikots 和另外 2 个以前未描述的类别的芋螺毒素进化相关的新类别。重组 Mu8.1 的晶体结构显示出类脂转移蛋白样折叠,并显示出与 con-ikot-ikot 的结构相似性。功能研究表明 Mu8.1 可限制特定种类的鼠感觉背根神经节 (DRG) 神经元中的钙内流。在对各种重组表达的电压门控离子通道进行测试时,Mu8.1 对 R 型 (Cav2.3) 钙通道显示出最高的效力。Mu8.1 敏感的 DRG 神经元的 Ca2+信号也被 SNX-482 抑制,SNX-482 是一种已知的蜘蛛肽 Cav2.3 和电压门控 K+ (Kv4) 通道调节剂。我们的发现强调了 Mu8.1 作为识别和研究表达 Cav2.3 的神经元亚类的分子工具的潜力。重要的是,这项多学科研究展示了在很大程度上未被探索的大型芋螺毒素组中发现新结构和生物活性的潜力。