Suppr超能文献

将催化单元整合到纳米材料中:用于CO增值的多功能催化剂的合理设计

Incorporating Catalytic Units into Nanomaterials: Rational Design of Multipurpose Catalysts for CO Valorization.

作者信息

Qiu Li-Qi, Li Hong-Ru, He Liang-Nian

机构信息

State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

College of Pharmacy, Nankai University, Tianjin 300350, China.

出版信息

Acc Chem Res. 2023 Aug 15;56(16):2225-2240. doi: 10.1021/acs.accounts.3c00316. Epub 2023 Aug 3.

Abstract

ConspectusCO conversion to valuable chemicals is effective at reducing CO emissions. We previously proposed valorization strategies and developed efficient catalysts to address thermodynamic stability and kinetic inertness issues related to CO conversion. Earlier, we developed molecular capture reagents and catalysts to integrate CO capture and conversion, i.e., in situ transformation. Based on the mechanistic understanding of CO capture, activation, and transformation at a molecular level, we set out to develop heterogeneous catalysts by incorporating catalytic units into nanomaterials via the immobilization of active molecular catalysts onto nanomaterials and designing nanomaterials with intrinsic catalytic sites.In thermocatalytic CO conversion, carbonaceous and metal-organic framework (MOF)-based catalysts were developed for nonreductive and reductive CO conversion. Novel Cu- and Zn-based MOFs and carbon-supported Cu catalysts were prepared and successfully applied to the cycloaddition, carboxylation, and carboxylative cyclization reactions with CO, generating cyclic carbonates, carboxyl acids, and oxazolidinones as respective target products. Reductive conversion of CO, especially reductive functionalization with CO, is a promising transformation strategy to produce valuable chemicals, alleviating chemical production that relies on petrochemistry. We explored the hierarchical reductive functionalization of CO using organocatalysts and proposed strategies to regulate the CO reduction level, triggering heterogeneous catalyst investigation. Introducing multiple active sites into nanomaterials opens possibilities to develop novel CO transformation strategies. CO capture and in situ conversion were realized with an N-doped carbon-supported Zn complex and MOF materials as CO adsorbents and catalysts. These nanomaterial-based catalysts feature high stability and excellent efficiency and act as shape-selective catalysts in some cases due to their unique pore structure.Nanomaterial-based catalysts are also appealing candidates for photocatalytic CO reduction (PCORR) and electrocatalytic CO reduction (ECORR), so we developed a series of hybrid photo-/electrocatalysts by incorporating active metal complexes into different matrixes such as porous organic polymers (POPs), metal-organic layers (MOLs), micelles, and conducting polymers. By introducing Re-bipyridine and Fe-porphyrin complexes into POPs and regulating the structure of the polymer chain, catalyst stability and efficiency increased in PCORR. PCORR in aqueous solution was realized by designing the Re-bipyridine-containing amphiphilic polymer to form micelles in aqueous solution and act as nanoreactors. We prepared MOLs with two different metallic centers, i.e., the Ni-bipyridine site and Ni-O node, to improve the efficiency for PCORR due to the synergistic effect of these metal centers. Sulfylphenoxy-decorated cobalt phthalocyanine (CoPc) cross-linked polypyrrole was prepared and used as a cathode, achieving the electrocatalytic transformation of diluted CO benefiting from the CO adsorption capability of polypyrrole. We fabricated immobilized 4-(-butyl)-phenoxy cobalt phthalocyanine and Bi-MOF as cathodes to promote the paired electrolysis of CO and 5-hydroxymethylfurfural (HMF) and obtained CO reductive products and 2,5-furandicarboxylic acid (FDCA) efficiently.

摘要

综述

将一氧化碳(CO)转化为有价值的化学品是减少CO排放的有效方法。我们之前提出了增值策略并开发了高效催化剂,以解决与CO转化相关的热力学稳定性和动力学惰性问题。早些时候,我们开发了分子捕获试剂和催化剂,以整合CO捕获和转化,即原位转化。基于对分子水平上CO捕获、活化和转化的机理理解,我们着手通过将活性分子催化剂固定在纳米材料上并设计具有固有催化位点的纳米材料,将催化单元纳入纳米材料中来开发多相催化剂。

在热催化CO转化中,开发了基于碳质和金属有机框架(MOF)的催化剂用于非还原和还原CO转化。制备了新型的基于铜和锌的MOF以及碳负载铜催化剂,并成功应用于与CO的环加成、羧化和羧基化环化反应,分别生成环状碳酸酯、羧酸和恶唑烷酮作为目标产物。CO的还原转化,特别是CO的还原官能化,是一种有前景的转化策略,可用于生产有价值的化学品,减少对石油化学的依赖。我们探索了使用有机催化剂对CO进行分级还原官能化,并提出了调节CO还原水平的策略,从而引发了对多相催化剂的研究。将多个活性位点引入纳米材料为开发新型CO转化策略开辟了可能性。使用氮掺杂碳负载锌配合物和MOF材料作为CO吸附剂和催化剂实现了CO捕获和原位转化。这些基于纳米材料的催化剂具有高稳定性和优异的效率,并且由于其独特的孔结构,在某些情况下还可作为形状选择性催化剂。

基于纳米材料的催化剂也是光催化CO还原(PCORR)和电催化CO还原(ECORR)的有吸引力的候选者,因此我们通过将活性金属配合物纳入不同的基质(如多孔有机聚合物(POP)、金属有机层(MOL)、胶束和导电聚合物)中,开发了一系列混合光/电催化剂。通过将铼联吡啶和铁卟啉配合物引入POP并调节聚合物链的结构,在PCORR中催化剂的稳定性和效率得到了提高。通过设计含铼联吡啶的两亲聚合物在水溶液中形成胶束并作为纳米反应器,实现了水溶液中的PCORR。我们制备了具有两种不同金属中心(即镍联吡啶位点和镍 - 氧节点)的MOL,由于这些金属中心的协同作用提高了PCORR的效率。制备了磺酰苯氧基修饰的钴酞菁(CoPc)交联聚吡咯并用作阴极,受益于聚吡咯对CO的吸附能力,实现了稀释CO的电催化转化。我们制备了固定化的4 - ( - 丁基) - 苯氧基钴酞菁和Bi - MOF作为阴极,以促进CO和5 - 羟甲基糠醛(HMF)的成对电解,并高效地获得了CO还原产物和2,5 - 呋喃二甲酸(FDCA)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验