Suppr超能文献

智能纳米材料制备技术面临可持续的C1催化。

Clever Nanomaterials Fabrication Techniques Encounter Sustainable C1 Catalysis.

作者信息

Wang Yang, Sun Jian, Tsubaki Noritatsu

机构信息

Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.

College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.

出版信息

Acc Chem Res. 2023 Sep 5;56(17):2341-2353. doi: 10.1021/acs.accounts.3c00311. Epub 2023 Aug 14.

Abstract

ConspectusC1 catalysis, which refers to the conversion of molecules with a single carbon atom, such as CO, CO, and CH, into clean fuels and basic building blocks for chemical industries, has built a bridge between carbon resource utilization and valuable chemical supply. With respect to the goal of carbon neutrality, C1 catalysis also plays an essential role owing to its integrated functions in the green catalytic process with fewer CO emissions and even direct high-value-added utilization of greenhouse gases (CO and CH). However, the inert nature of the C-O or C-H bond in C1 molecules as well as uncontrollable C-C coupling render C1 catalysis challenging. The rational design of highly active catalytic materials (denoted as C1 catalysts) with strong capacities for C-O or C-H bond activation and C-C coupling by convenient nanomaterials fabrication methods to boost the catalytic performance of C1 molecule conversion, including targeted product selectivity and long-term stability, is the cornerstone of C1 catalysis.Notably, the familiar concepts in heterogeneous catalysis, such as tandem catalysis and confinement catalysis, are applicable for C1 catalysis and have been successfully used to design a C1 catalyst. Regarding the tandem catalysis concept that integrates multiple reactions in a single-pass via a bi- or multifunctional catalyst, it is promising to shed new light on the oriented conversion of C1 molecules, especially for C hydrocarbon or oxygenate synthesis. The confinement effect is powerful for controlling the product distribution and enhancing activation efficiency of inert chemical bonds in C1 catalysis due to the unique reactant/intermediate adsorption and evolution behaviors on the confined catalytic interface with a special electronic environment. Moreover, metal-support interactions (MSIs), electronic properties of the active site, and catalytic engineering issues are also susceptible to the C1 molecule conversion performance. Therefore, under the guidance of basic and novel rules in heterogeneous catalysis, the innovation of catalytic materials with the aid of advanced catalytic materials fabrication techniques has always been a hot research topic in C1 catalysis.In this Account, we briefly describe the challenges in thermal-catalytic C1 molecule (mainly CO, CO, and CH) conversion. At the same time, the synergistic functioning of the physicochemical properties of the catalytic materials on the performance in C1 molecule conversion is highlighted. More importantly, we summarize our progress in rationally designing tailor-made C1 catalysts to enhance C1 molecule activation efficiency and targeted product selectivity via powerful nanomaterials fabrication techniques, such as traditional wet-chemistry strategies, the magnetron sputtering method, and 3D printing technology. Specifically, the ingenious capsule catalyst and ammonia pools in zeolites fabricated by a wet chemistry process possess an extraordinary effect on the transformation of CO, CO, and CH molecules. Also, the sputtering method is reliable in modulating the electronic properties of metallic active sites for C1 molecule conversion, thereby tailoring the final product selectivity. Furthermore, we showcase the strong capability of metal 3D printing technology in fabricating a self-catalytic reactor, by which the functions of the reaction field and nanoscale active sites are well integrated. Finally, we predict the future research opportunities in highly efficient C1 catalyst design with the assistance of clever nanomaterials fabrication techniques.

摘要

概述

C1催化是指将含有单个碳原子的分子(如CO、CO₂和CH₄)转化为清洁燃料和化学工业的基础构建单元,它在碳资源利用和有价值化学品供应之间架起了一座桥梁。就碳中和目标而言,C1催化因其在绿色催化过程中的综合功能(减少CO₂排放,甚至直接对温室气体(CO₂和CH₄)进行高附加值利用)也发挥着至关重要的作用。然而,C1分子中C - O或C - H键的惰性以及不可控的C - C偶联使得C1催化具有挑战性。通过便捷的纳米材料制备方法合理设计具有强大C - O或C - H键活化能力以及C - C偶联能力的高活性催化材料(称为C1催化剂),以提高C1分子转化的催化性能,包括目标产物选择性和长期稳定性,是C1催化的基石。

值得注意的是,多相催化中常见的概念,如串联催化和限域催化,适用于C1催化,并已成功用于设计C1催化剂。关于通过双功能或多功能催化剂在单程中整合多个反应的串联催化概念,有望为C1分子的定向转化带来新的启示,特别是对于C烃或含氧化合物的合成。限域效应对于控制产物分布和提高C1催化中惰性化学键的活化效率非常有效,这是由于在具有特殊电子环境的限域催化界面上独特的反应物/中间体吸附和演化行为。此外,金属 - 载体相互作用(MSIs)、活性位点的电子性质以及催化工程问题也会影响C1分子的转化性能。因此,在多相催化基本和新颖规则的指导下,借助先进的催化材料制备技术创新催化材料一直是C1催化领域的研究热点。

在本综述中,我们简要描述了热催化C1分子(主要是CO、CO₂和CH₄)转化中的挑战。同时,突出了催化材料的物理化学性质对C1分子转化性能的协同作用。更重要的是,我们总结了我们在通过强大的纳米材料制备技术,如传统湿化学策略、磁控溅射法和3D打印技术,合理设计定制C1催化剂以提高C1分子活化效率和目标产物选择性方面的进展。具体而言,通过湿化学过程制备的沸石中的巧妙胶囊催化剂和氨池对CO、CO₂和CH₄分子的转化具有非凡效果。此外,溅射法在调节用于C1分子转化的金属活性位点的电子性质方面是可靠的,从而定制最终产物选择性。此外,我们展示了金属3D打印技术在制造自催化反应器方面的强大能力,通过该反应器,反应场和纳米级活性位点的功能得到了很好的整合。最后,我们预测了借助巧妙的纳米材料制备技术在高效C1催化剂设计方面未来的研究机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验