Zawiska Izabela, Jasiewicz Jarosław, Rzodkiewicz Monika, Woszczyk Michał
Institute of Geography and Spatial Organization, Polish Academy of Sciences, Twarda 51/55, PL-00818, Warsaw, Poland.
Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Bogumiła Krygowskiego 10, PL-61680, Poznań, Poland.
J Environ Manage. 2023 Nov 1;345:118679. doi: 10.1016/j.jenvman.2023.118679. Epub 2023 Aug 1.
For the effective management of lakes apart from defining and monitoring their current state it is crucial to identify environmental variables that are mostly responsible for the nutrient input. We used interpretative machine learning to investigate the environmental parameters that influence the lake's trophic state and recognize their patterns. We analysed the influence of the 25 environmental variables on the commonly used trophic state indicators values: total phosphorus (TP), Chlorophyll-a (Chl-a) and Secchi depth (SD) of 60 lakes located in the Central European Lowlands. We attempted to delineate the lakes into groups due to the influence of common prevailing environment variable/variables on the water trophic state reflected by each indicator. The results indicated that the relative impact of environmental variables on the lake trophic state has an individual hierarchy unique for each indicator. The most important are variables related to catchment impact on the lake, Ohle ratio (L. catchment area/L. area) for TP and Schindler ratio (L. area + L. catchment area)/L. volume for Chl-a and SD. There are also few variables strongly influential only for small sub-groups of lakes that stand out: lake maximum depth, catchment slope steepness expressed by the height standard deviation. The methods used in the study enabled the assessment of the character of the influence of the environmental variables on the indicator value and revealed that most essential variables (Ohle ratio for TP and Schindler ratio for Chl-a and SD) have bimodal distribution with a clear threshold value. These findings contribute to a better understanding of the drivers shaping the lake trophic status and have implication for planning effective management strategies.
为了有效管理湖泊,除了定义和监测其当前状态外,识别对养分输入起主要作用的环境变量至关重要。我们使用解释性机器学习来研究影响湖泊营养状态的环境参数,并识别其模式。我们分析了25个环境变量对位于中欧低地的60个湖泊常用营养状态指标值的影响:总磷(TP)、叶绿素a(Chl-a)和塞氏深度(SD)。由于共同的主要环境变量对每个指标所反映的水体营养状态的影响,我们试图将湖泊划分为不同的组。结果表明,环境变量对湖泊营养状态的相对影响对于每个指标都有独特的个体层次结构。最重要的是与集水区对湖泊的影响相关的变量,TP的奥勒比率(湖泊集水区面积/湖泊面积)以及Chl-a和SD的辛德勒比率(湖泊面积 + 湖泊集水区面积)/湖泊体积。对于少数突出的湖泊小亚组也有一些影响强烈的变量:湖泊最大深度、以高度标准差表示的集水区坡度陡度。该研究中使用的方法能够评估环境变量对指标值的影响特征,并揭示大多数基本变量(TP的奥勒比率以及Chl-a和SD的辛德勒比率)具有双峰分布且有明确的阈值。这些发现有助于更好地理解塑造湖泊营养状态的驱动因素,并对规划有效的管理策略具有启示意义。