Suppr超能文献

使用慢性神经植入物对自由活动犬进行自动睡眠分类。

Automated sleep classification with chronic neural implants in freely behaving canines.

机构信息

Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America.

Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic.

出版信息

J Neural Eng. 2023 Aug 10;20(4). doi: 10.1088/1741-2552/aced21.

Abstract

Long-term intracranial electroencephalography (iEEG) in freely behaving animals provides valuable electrophysiological information and when correlated with animal behavior is useful for investigating brain function.Here we develop and validate an automated iEEG-based sleep-wake classifier for canines using expert sleep labels derived from simultaneous video, accelerometry, scalp electroencephalography (EEG) and iEEG monitoring. The video, scalp EEG, and accelerometry recordings were manually scored by a board-certified sleep expert into sleep-wake state categories: awake, rapid-eye-movement (REM) sleep, and three non-REM sleep categories (NREM1, 2, 3). The expert labels were used to train, validate, and test a fully automated iEEG sleep-wake classifier in freely behaving canines.. The iEEG-based classifier achieved an overall classification accuracy of 0.878 ± 0.055 and a Cohen's Kappa score of 0.786 ± 0.090. Subsequently, we used the automated iEEG-based classifier to investigate sleep over multiple weeks in freely behaving canines. The results show that the dogs spend a significant amount of the day sleeping, but the characteristics of daytime nap sleep differ from night-time sleep in three key characteristics: during the day, there are fewer NREM sleep cycles (10.81 ± 2.34 cycles per day vs. 22.39 ± 3.88 cycles per night;< 0.001), shorter NREM cycle durations (13.83 ± 8.50 min per day vs. 15.09 ± 8.55 min per night;< 0.001), and dogs spend a greater proportion of sleep time in NREM sleep and less time in REM sleep compared to night-time sleep (NREM 0.88 ± 0.09, REM 0.12 ± 0.09 per day vs. NREM 0.80 ± 0.08, REM 0.20 ± 0.08 per night;< 0.001).These results support the feasibility and accuracy of automated iEEG sleep-wake classifiers for canine behavior investigations.

摘要

长期的颅内脑电图(iEEG)在自由活动的动物中提供了有价值的电生理信息,当与动物行为相关联时,它对于研究大脑功能非常有用。在这里,我们使用来自同步视频、加速度计、头皮脑电图(EEG)和 iEEG 监测的专家睡眠标签,为犬类开发并验证了一种基于自动 iEEG 的睡眠-觉醒分类器。视频、头皮 EEG 和加速度计记录由经过委员会认证的睡眠专家手动评分,分为睡眠-觉醒状态类别:觉醒、快速眼动(REM)睡眠和三个非快速眼动睡眠类别(NREM1、2、3)。专家标签用于训练、验证和测试自由活动犬的全自动 iEEG 睡眠-觉醒分类器。基于 iEEG 的分类器的总体分类准确率为 0.878 ± 0.055,Cohen's Kappa 评分为 0.786 ± 0.090。随后,我们使用自动基于 iEEG 的分类器在自由活动的犬中进行了多个星期的睡眠研究。结果表明,狗每天花大量时间睡觉,但白天小睡的特征在三个关键特征上与夜间睡眠不同:白天,NREM 睡眠周期较少(每天 10.81 ± 2.34 个周期,每晚 22.39 ± 3.88 个周期;<0.001),NREM 周期持续时间较短(每天 13.83 ± 8.50 分钟,每晚 15.09 ± 8.55 分钟;<0.001),与夜间睡眠相比,狗在 NREM 睡眠中花费更多的睡眠时间,在 REM 睡眠中花费更少的时间(白天 NREM 0.88 ± 0.09,REM 0.12 ± 0.09,夜间 NREM 0.80 ± 0.08,REM 0.20 ± 0.08;<0.001)。这些结果支持自动 iEEG 睡眠-觉醒分类器用于犬类行为研究的可行性和准确性。

相似文献

2
Noninvasive dissection of mouse sleep using a piezoelectric motion sensor.使用压电运动传感器对小鼠睡眠进行无创剖析。
J Neurosci Methods. 2016 Feb 1;259:90-100. doi: 10.1016/j.jneumeth.2015.11.004. Epub 2015 Nov 12.
7
8
Neurophysiological brain mapping of human sleep-wake states.人类睡眠-觉醒状态的神经生理脑图谱。
Clin Neurophysiol. 2021 Jul;132(7):1550-1563. doi: 10.1016/j.clinph.2021.03.014. Epub 2021 Apr 1.
9
Design and validation of a computer-based sleep-scoring algorithm.基于计算机的睡眠评分算法的设计与验证
J Neurosci Methods. 2004 Feb 15;133(1-2):71-80. doi: 10.1016/j.jneumeth.2003.09.025.

本文引用的文献

10
Deep-learning for seizure forecasting in canines with epilepsy.深度学习在癫痫犬中的癫痫发作预测。
J Neural Eng. 2019 Jun;16(3):036031. doi: 10.1088/1741-2552/ab172d. Epub 2019 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验