Suppr超能文献

基于人群的分析和外部验证:肺肉瘤样癌患者癌症特异性生存的新模型。

Novel model for cancer-specific survival of patients with pulmonary sarcomatoid carcinoma: A population-based analysis and external validation.

机构信息

Department of Respiratory Medicine Center, Third Military Medical University Southwest Hospital, Chongqing, China.

Department of Respiratory Medicine Center, Third Military Medical University Southwest Hospital, Chongqing, China.

出版信息

Asian J Surg. 2024 Jan;47(1):184-194. doi: 10.1016/j.asjsur.2023.07.002. Epub 2023 Aug 1.

Abstract

BACKGROUND/OBJECTIVE: We aimed to develop a comprehensive and effective nomogram for predicting cancer-specific survival (CSS) in patients with pulmonary sarcomatoid carcinoma (PSC).

METHODS

Data for patients diagnosed with PSC between 2004 and 2018 from the Surveillance, Epidemiology, and End Results database were retrospectively collected and randomly divided into training and internal validation sets. We then retrospectively recruited patients diagnosed with PSC to construct an external validation cohort from the Southwest Hospital. A prognostic nomogram for CSS was established using independent prognostic factors that were screened from the multivariate Cox regression analysis. The performance of the nomogram was evaluated using area under the receiver operating characteristic (ROC) curves, Harrell's concordance index (C-index), calibration diagrams, and decision curve analysis (DCA). The clinical value of the nomogram and tumor, nodes, and metastases (TNM) staging system was compared using the C-index and net reclassification index (NRI).

RESULTS

Overall, 1356 patients with PSC were enrolled, including 876, 377, and 103 in the training, internal validation, and external validation sets, respectively. The C-index and ROC curves, calibration, and DCA demonstrated satisfactory nomogram performance for CSS in patients with PSC. In addition, the C-index and NRI of the nomogram suggested a significantly higher nomogram value than that of the TNM staging system. Subsequently, a web-based predictor was developed to help clinicians obtain this model easily.

CONCLUSIONS

The prognostic nomogram developed in this study can conveniently and precisely estimate the prognosis of patients with PSC and individualize treatment, thereby assisting clinicians in their shared decision-making with patients.

摘要

背景/目的:我们旨在开发一个全面有效的列线图,以预测肺肉瘤样癌(PSC)患者的癌症特异性生存(CSS)。

方法

回顾性收集了 2004 年至 2018 年期间从监测、流行病学和最终结果(SEER)数据库中诊断为 PSC 的患者数据,并将其随机分为训练集和内部验证集。然后,我们从西南医院回顾性招募了诊断为 PSC 的患者,以构建外部验证队列。使用从多变量 Cox 回归分析中筛选出的独立预后因素,建立 CSS 的预后列线图。使用接受者操作特征(ROC)曲线下面积、Harrell 一致性指数(C-index)、校准图和决策曲线分析(DCA)评估列线图的性能。使用 C-index 和净重新分类指数(NRI)比较列线图和肿瘤、淋巴结和转移(TNM)分期系统的临床价值。

结果

总体而言,共纳入 1356 例 PSC 患者,分别有 876、377 和 103 例患者纳入训练集、内部验证集和外部验证集。C-index 和 ROC 曲线、校准和 DCA 表明,该列线图在预测 PSC 患者 CSS 方面具有良好的性能。此外,列线图的 C-index 和 NRI 表明,列线图的价值明显高于 TNM 分期系统。随后,开发了一个基于网络的预测器,以帮助临床医生方便地获得该模型。

结论

本研究开发的预后列线图可以方便、准确地评估 PSC 患者的预后,并实现个体化治疗,从而协助临床医生与患者进行共同决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验