Suppr超能文献

一款专为运输行业量身定制的开源数字接触者追踪系统。

An open-source digital contact tracing system tailored to haulage.

作者信息

Muwonge Adrian, Wee Bryan A, Mugerwa Ibrahimm, Nabunya Emma, Mpyangu Christine M, Bronsvoort Barend M de C, Ssebaggala Emmanuel Robert, Kiayias Aggelos, Mwaka Erisa, Joloba Moses

机构信息

Digital One Health Laboratory, The Roslin Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.

Blockchain Technology Laboratory, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

Front Digit Health. 2023 Jul 19;5:1199635. doi: 10.3389/fdgth.2023.1199635. eCollection 2023.

Abstract

Digital contact tracing presents numerous advantages compared to manual contact tracing methods, especially in terms of enhanced speed and automation. Nevertheless, a lack of comprehensive evaluation regarding functionality, efficiency, benefits, and acceptance within communities remains. Here we primarily focus on the functionality of THEA-GS, an open-source digital contact tracing tool developed through consultation with stakeholders. Additionally, we provide insights from its implementation on a limited sample of haulage drivers in Uganda, serving as a representative case for a low- and middle-income country. THEA-GS comprises two primary components: (a) a smartphone application, and (b) a suite of server-programs responsible for data processing and analysis, including databases and a web-based interface featuring dashboards. In essence, the mobile application records the timestamped location of haulage drivers within the road network and identifies possible transmission hotspots by analyzing factors such as the duration of stops and the communities associated with them. The tool can be integrated with national infrastructure to compare drivers' diagnostic results and contact structure, thereby generating individual and community risk assessments relative to the road network. During the Omicron-variant wave of the COVID-19 pandemic, a total of 3,270 haulage drivers were enrolled between October 2021 and October 2022. Around 75% of these drivers utilized THEA-GS for approximately two months. Based on an analysis of 3,800 test results, which included 48 positive cases, 125 contacts, and 40 million time-stamped GPS points, THEA-GS shows a significant speed improvement, being approximately 90 times faster than MCT. For instance, the average time from sample collection to notifying a case and their contacts was approximately 70 and 80 min, respectively. The adoption of this tool encountered challenges, mainly due to drivers' awareness of its purpose and benefits for public health. THEA-GS is a place-based digital contact tracing tool specifically designed to assist National Public Health Institutions in managing infectious disease outbreaks involving the haulage industry as a high-risk group. While its utility, acceptance, and accuracy have not been fully evaluated, our preliminary tests conducted in Uganda indicate the tool's functionality is robust, but social acceptance and adoption are heavily reliant on establishing trust among users.

摘要

与手动接触者追踪方法相比,数字接触者追踪具有诸多优势,尤其是在提高速度和自动化方面。然而,对于其在社区中的功能、效率、益处和接受度仍缺乏全面评估。在此,我们主要关注THEA-GS的功能,这是一款通过与利益相关者协商开发的开源数字接触者追踪工具。此外,我们还介绍了在乌干达对一小部分运输司机进行实施的情况,并将其作为低收入和中等收入国家的一个典型案例。THEA-GS主要由两个部分组成:(a)一个智能手机应用程序,以及(b)一套负责数据处理和分析的服务器程序,包括数据库和一个带有仪表盘的基于网络的界面。本质上,移动应用程序记录运输司机在道路网络中的带时间戳的位置,并通过分析停留时间以及与之相关的社区等因素来识别可能的传播热点。该工具可以与国家基础设施集成,以比较司机的诊断结果和接触结构,从而生成相对于道路网络的个人和社区风险评估。在新冠疫情的奥密克戎变异株流行期间,2021年10月至2022年10月期间共招募了3270名运输司机。其中约75%的司机使用THEA-GS约两个月。基于对3800份检测结果的分析,其中包括48例阳性病例、125名接触者和4000万个带时间戳的GPS点,THEA-GS显示出显著的速度提升,比MCT快约90倍。例如,从样本采集到通知病例及其接触者的平均时间分别约为70分钟和80分钟。该工具的采用遇到了挑战,主要是因为司机对其目的以及对公共卫生的益处缺乏认识。THEA-GS是一款基于地点的数字接触者追踪工具,专门设计用于协助国家公共卫生机构管理涉及运输行业这一高风险群体的传染病疫情。虽然其效用、接受度和准确性尚未得到充分评估,但我们在乌干达进行的初步测试表明该工具功能强大,但社会接受度和采用情况在很大程度上依赖于在用户之间建立信任。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da7d/10394895/b38459833a6d/fdgth-05-1199635-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验