Suppr超能文献

生物医学研究中卓越生产力研究的数据整合

Data Integration for the Study of Outstanding Productivity in Biomedical Research.

作者信息

Aubert Clément, Balas E Andrew, Townsend Tiffany, Sleeper Noah, Tran C J

机构信息

Augusta University, GA, USA.

出版信息

Procedia Comput Sci. 2022;211:196-200. doi: 10.1016/j.procs.2022.10.191. Epub 2022 Nov 16.

Abstract

Our goal is to analyze improvement of scientific performance in a multidimensional outcome space, with a focus on US-based biomedical research. With the growing diversity of research databases, limiting assessment of scientific productivity to bibliometric measures such as number of publications, impact factor of journals and number of citations, is increasingly challenged. Using a wider range of outcomes, from publications through practice improvements to entrepreneurial outcomes, overcomes many current limitations in the study of research growth. However, combining such heterogeneous datasets raise three challenges: 1. gathering in one common place a variety of data shared as csv, xml or xls files, 2. merging and linking this data, that sometimes overlap, 3. assessing the impact of research production and inclusive practices in a multidimensional space, that are often missing from the datasets. We would like to present our solution for the first of those challenges, and discuss our leads for the second and third challenges.

摘要

我们的目标是在一个多维成果空间中分析科研绩效的提升情况,重点关注美国的生物医学研究。随着研究数据库的日益多样化,将科研生产力的评估局限于诸如出版物数量、期刊影响因子和被引次数等文献计量指标,正面临越来越多的挑战。使用从出版物到实践改进再到创业成果等更广泛的成果范围,克服了当前研究增长研究中的许多局限性。然而,整合这些异构数据集带来了三个挑战:1. 在一个共同的地方收集以csv、xml或xls文件形式共享的各种数据;2. 合并和链接这些有时会重叠的数据;3. 在一个多维空间中评估研究产出和包容性实践的影响,而这些在数据集中往往缺失。我们想展示我们针对第一个挑战的解决方案,并讨论我们在第二个和第三个挑战方面的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec4a/10399210/70b99239b9a8/nihms-1917191-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验