Suppr超能文献

评估新提出的代谢评分对预测未来糖尿病的内脏脂肪的有用性:来自 NAGALA 队列研究的结果。

Assessing the usefulness of a newly proposed metabolic score for visceral fat in predicting future diabetes: results from the NAGALA cohort study.

机构信息

Department of Endocrinology, Jiangxi Provincial People's Hospital, Medical College of Nanchang University, Nanchang, Jiangxi, China.

Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.

出版信息

Front Endocrinol (Lausanne). 2023 Jul 19;14:1172323. doi: 10.3389/fendo.2023.1172323. eCollection 2023.

Abstract

OBJECTIVE

Visceral adipose tissue assessment holds significant importance in diabetes prevention. This study aimed to explore the association between the newly proposed Metabolic Score for Visceral Fat (METS-VF) and diabetes risk and to further assess the predictive power of the baseline METS-VF for the occurrence of diabetes in different future periods.

METHODS

This longitudinal cohort study included 15,464 subjects who underwent health screenings. The METS-VF, calculated using the formula developed by Bello-Chavolla et al., served as a surrogate marker for visceral fat obesity. The primary outcome of interest was the occurrence of diabetes during the follow-up period. Established multivariate Cox regression models and restricted cubic spline (RCS) regression models to assess the association between METS-VF and diabetes risk and its shape. Receiver operating characteristic (ROC) curves were used to compare the predictive power of METS-VF with body mass index (BMI), waist circumference (WC), waist-to-height ratio (WHtR), and visceral adiposity index (VAI) for diabetes, and time-dependent ROC analysis was conducted to assess the predictive capability of METS-VF for the occurrence of diabetes in various future periods.

RESULTS

During a maximum follow-up period of 13 years, with a mean of 6.13 years, we observed that the cumulative risk of developing diabetes increased with increasing METS-VF quintiles. Multivariable-adjusted Cox regression analysis showed that each unit increase in METS-VF would increase the risk of diabetes by 68% (HR 1.68, 95% CI 1.13, 2.50), and further RCS regression analysis revealed a possible non-linear association between METS-VF and diabetes risk ( for non-linearity=0.002). In addition, after comparison by ROC analysis, we found that METS-VF had significantly higher predictive power for diabetes than other general/visceral adiposity indicators, and in time-dependent ROC analysis, we further considered the time-dependence of diabetes status and METS-VF and found that METS-VF had the highest predictive value for predicting medium- and long-term (6-10 years) diabetes risk.

CONCLUSION

METS-VF, a novel indicator for assessing visceral adiposity, showed a significantly positive correlation with diabetes risk. It proved to be a superior risk marker in predicting the future onset of diabetes compared to other general/visceral adiposity indicators, particularly in forecasting medium- and long-term diabetes risk.

摘要

目的

内脏脂肪组织评估在糖尿病预防中具有重要意义。本研究旨在探讨新提出的代谢评分用于评估内脏脂肪(METS-VF)与糖尿病风险的相关性,并进一步评估基线 METS-VF 对不同未来时期糖尿病发生的预测能力。

方法

这是一项纵向队列研究,纳入了 15464 名接受健康筛查的受试者。METS-VF 是使用 Bello-Chavolla 等人提出的公式计算得出的,作为内脏脂肪肥胖的替代标志物。主要结局是随访期间发生糖尿病。采用多变量 Cox 回归模型和限制性三次样条(RCS)回归模型评估 METS-VF 与糖尿病风险及其形态的关系。采用受试者工作特征(ROC)曲线比较 METS-VF 与体重指数(BMI)、腰围(WC)、腰高比(WHtR)和内脏脂肪指数(VAI)对糖尿病的预测能力,并进行时间依赖性 ROC 分析,以评估 METS-VF 对不同未来时期糖尿病发生的预测能力。

结果

在最长 13 年的随访期间(平均 6.13 年),我们观察到随着 METS-VF 五分位组的增加,发生糖尿病的累积风险增加。多变量调整的 Cox 回归分析显示,METS-VF 每增加一个单位,糖尿病的风险增加 68%(HR 1.68,95%CI 1.13,2.50),进一步的 RCS 回归分析显示 METS-VF 与糖尿病风险之间可能存在非线性关系( 非线性=0.002)。此外,通过 ROC 分析比较后发现,METS-VF 对糖尿病的预测能力明显高于其他一般/内脏脂肪指标,在时间依赖性 ROC 分析中,我们进一步考虑了糖尿病状态和 METS-VF 的时间依赖性,发现 METS-VF 对预测中-长期(6-10 年)糖尿病风险具有最高的预测价值。

结论

METS-VF 是一种新的评估内脏脂肪的指标,与糖尿病风险呈显著正相关。与其他一般/内脏脂肪指标相比,它在预测未来糖尿病发病方面具有更高的风险标志物价值,特别是在预测中-长期糖尿病风险方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fc1/10395081/d1d9d6802e10/fendo-14-1172323-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验