Suppr超能文献

基于人工智能的身体成分评估在预测结肠癌化疗患者的剂量限制性毒性方面是否优于体表面积?

Can AI-based body composition assessment outperform body surface area in predicting dose-limiting toxicities for colonic cancer patients on chemotherapy?

作者信息

Cao Ke, Yeung Josephine, Arafat Yasser, Choi CheukShan, Wei Matthew Y K, Chan Steven, Lee Margaret, Baird Paul N, Yeung Justin M C

机构信息

Department of Surgery, Western Precinct, University of Melbourne, Melbourne, Australia.

Department of Colorectal Surgery, Western Health, Melbourne, Australia.

出版信息

J Cancer Res Clin Oncol. 2023 Nov;149(15):13915-13923. doi: 10.1007/s00432-023-05227-7. Epub 2023 Aug 4.

Abstract

PURPOSE

Gold standard chemotherapy dosage is based on body surface area (BSA); however many patients experience dose-limiting toxicities (DLT). We aimed to evaluate the effectiveness of BSA, two-dimensional (2D) and three-dimensional (3D) body composition (BC) measurements derived from Lumbar 3 vertebra (L3) computed tomography (CT) slices, in predicting DLT in colon cancer patients.

METHODS

203 patients (60.87 ± 12.42 years; 97 males, 47.8%) receiving adjuvant chemotherapy (Oxaliplatin and/or 5-Fluorouracil) were retrospectively evaluated. An artificial intelligence segmentation model was used to extract 2D and 3D body composition measurements from each patients' single mid-L3 CT slice as well as multiple-L3 CT scans to produce a 3D BC report. DLT was defined as any incidence of dose reduction or discontinuation due to chemotherapy toxicities. A receiver operating characteristic (ROC) analysis was performed on BSA and individual body composition measurements to demonstrate their predictive performance.

RESULTS

A total of 120 (59.1%) patients experienced DLT. Age and BSA did not vary significantly between DLT and non-DLT group. Females were significantly more likely to experience DLT (p = 4.9 × 10). In all patients, the predictive effectiveness of 2D body composition measurements (females: AUC = 0.50-0.54; males: AUC = 0.50-0.61) was equivalent to that of BSA (females: AUC = 0.49; males: AUC = 0.58). The L3 3D skeletal muscle volume was the most predictive indicator of DLT (AUC of 0.66 in females and 0.64 in males).

CONCLUSION

Compared to BSA and 2D body composition measurements, 3D L3 body composition measurements had greater potential to predict DLT in CRC patients receiving chemotherapy and this was sex dependent.

摘要

目的

金标准化疗剂量是基于体表面积(BSA);然而,许多患者会经历剂量限制性毒性(DLT)。我们旨在评估BSA、从第三腰椎(L3)计算机断层扫描(CT)切片得出的二维(2D)和三维(3D)身体成分(BC)测量值在预测结肠癌患者DLT方面的有效性。

方法

对203例接受辅助化疗(奥沙利铂和/或5-氟尿嘧啶)的患者(60.87±12.42岁;97例男性,占47.8%)进行回顾性评估。使用人工智能分割模型从每位患者的单个L3中部CT切片以及多个L3 CT扫描中提取2D和3D身体成分测量值,以生成3D BC报告。DLT定义为因化疗毒性导致的任何剂量减少或停药事件。对BSA和个体身体成分测量值进行受试者操作特征(ROC)分析,以证明其预测性能。

结果

共有120例(59.1%)患者经历了DLT。DLT组和非DLT组之间的年龄和BSA无显著差异。女性经历DLT的可能性显著更高(p = 4.9×10)。在所有患者中,2D身体成分测量值的预测有效性(女性:AUC = 0.50 - 0.54;男性:AUC = 0.50 - 0.61)与BSA相当(女性:AUC = 0.49;男性:AUC = 0.58)。L3的3D骨骼肌体积是DLT最具预测性的指标(女性AUC为0.66,男性AUC为0.64)。

结论

与BSA和2D身体成分测量值相比,3D L

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/996d/11798060/2c5fc512297a/432_2023_5227_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验