Suppr超能文献

利用基于人工智能CT的整个L1-L5腰椎3D身体成分改善结肠癌患者化疗剂量限制性毒性的预测。

Improving the prediction of chemotherapy dose-limiting toxicity in colon cancer patients using an AI-CT-based 3D body composition of the entire L1-L5 lumbar spine.

作者信息

Cao Ke, Yeung Josephine, Wei Matthew Y K, Choi Cheuk Shan, Lee Margaret, Lim Lincoln J, Arafat Yasser, Baird Paul N, Yeung Justin M C

机构信息

Department of Surgery, Western Precinct, University of Melbourne, Melbourne, Australia.

Department of Colorectal Surgery, Western Health, Melbourne, Australia.

出版信息

Support Care Cancer. 2024 Dec 21;33(1):45. doi: 10.1007/s00520-024-09108-8.

Abstract

PURPOSE

Chemotherapy dose-limiting toxicities (DLT) pose a significant challenge in successful colon cancer treatment. Body composition analysis may enable tailored interventions thereby supporting the mitigation of chemotherapy toxic effects. This study aimed to evaluate and compare the effectiveness of using three-dimensional (3D) CT body composition measures from the entire lumbar spine levels (L1-L5) versus a single vertebral level (L3), the current gold standard, in predicting chemotherapy DLT in colon cancer patients.

METHODS

Retrospective analysis of 184 non-metastatic colon cancer patients receiving adjuvant chemotherapy was performed. DLT was defined as any occurrence of dose reduction or discontinuation due to chemotherapy toxicity. Using artificial intelligence (AI) auto-segmentation, 3D body composition measurements were obtained from patients' L1-L5 levels on CT imaging. The effectiveness of patients' 3D L3 body composition measurement and incorporating data from the entire L1-L5 (including L3) region in predicting DLT was examined.

RESULTS

Of the 184 patients, 112 (60.9%) experienced DLT. Neuropathy was the most common toxicity (49/112, 43.8%) followed by diarrhea (35.7%) and nausea/vomiting (33%). Patients with DLT had lower muscle volume at all lumbar levels compared to those without. The machine learning model incorporating L1-L5 data and patient clinical data achieved high predictive performance (AUC = 0.75, accuracy = 0.75), outperforming the prediction using single L3 level (AUC = 0.65, accuracy = 0.65).

CONCLUSION

Evaluating a patient's body composition allowed prediction of chemotherapy toxicities for colon cancer. Incorporating fully automated body composition analysis of CT slices from the entire lumbar region offers promising performance in early identification of high-risk individuals, with the ultimate aim of improving patient's quality of life.

摘要

目的

化疗剂量限制性毒性(DLT)是成功治疗结肠癌的一项重大挑战。身体成分分析或许能实现个性化干预,从而有助于减轻化疗的毒性作用。本研究旨在评估并比较采用整个腰椎水平(L1 - L5)的三维(3D)CT身体成分测量值与当前的金标准——单个椎体水平(L3),在预测结肠癌患者化疗DLT方面的有效性。

方法

对184例接受辅助化疗的非转移性结肠癌患者进行回顾性分析。DLT定义为因化疗毒性导致的任何剂量减少或停药情况。利用人工智能(AI)自动分割技术,在CT成像上获取患者L1 - L5水平的3D身体成分测量值。研究了患者的3D L3身体成分测量值以及纳入整个L1 - L5(包括L3)区域数据在预测DLT方面的有效性。

结果

184例患者中,112例(60.9%)出现DLT。神经病变是最常见的毒性反应(49/112,43.8%),其次是腹泻(35.7%)和恶心/呕吐(33%)。与未出现DLT的患者相比,出现DLT的患者在所有腰椎水平的肌肉体积均较低。纳入L1 - L5数据和患者临床数据的机器学习模型具有较高的预测性能(AUC = 0.75,准确率 = 0.75),优于使用单个L3水平的预测(AUC = 0.65,准确率 = 0.65)。

结论

评估患者的身体成分能够预测结肠癌的化疗毒性。纳入整个腰椎区域CT切片的全自动身体成分分析在早期识别高危个体方面具有良好的性能,最终目标是改善患者的生活质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验