Department of Methodology and Statistics, Tilburg University, P.O. Box 90153, 5000 LE, Tilburg, The Netherlands.
Behav Res Methods. 2024 Mar;56(3):1994-2012. doi: 10.3758/s13428-023-02132-2. Epub 2023 Jul 24.
Outcome reporting bias (ORB) refers to the biasing effect caused by researchers selectively reporting outcomes within a study based on their statistical significance. ORB leads to inflated effect size estimates in meta-analysis if only the outcome with the largest effect size is reported due to ORB. We propose a new method (CORB) to correct for ORB that includes an estimate of the variability of the outcomes' effect size as a moderator in a meta-regression model. An estimate of the variability of the outcomes' effect size can be computed by assuming a correlation among the outcomes. Results of a Monte-Carlo simulation study showed that the effect size in meta-analyses may be severely overestimated without correcting for ORB. Estimates of CORB are close to the true effect size when overestimation caused by ORB is the largest. Applying the method to a meta-analysis on the effect of playing violent video games on aggression showed that the effect size estimate decreased when correcting for ORB. We recommend to routinely apply methods to correct for ORB in any meta-analysis. We provide annotated R code and functions to help researchers apply the CORB method.
发表偏倚(Outcome Reporting Bias,ORB)是指研究者根据研究结果的统计学显著性选择性报告研究结果所导致的偏倚效应。如果由于 ORB 仅报告了效应量最大的结果,则在荟萃分析中会导致效应量估计值过高。我们提出了一种新的方法(CORB)来校正 ORB,该方法在荟萃回归模型中包含了对结果效应量变异的估计作为调节变量。可以通过假设结果之间存在相关性来计算结果效应量变异的估计值。一项蒙特卡罗模拟研究的结果表明,如果不校正 ORB,荟萃分析中的效应量可能会严重高估。当由 ORB 引起的高估最大时,CORB 的估计值接近真实效应量。将该方法应用于关于玩暴力视频游戏对攻击性影响的荟萃分析表明,在校正 ORB 后,效应量估计值降低。我们建议在任何荟萃分析中都应常规应用校正 ORB 的方法。我们提供了注释的 R 代码和函数,以帮助研究人员应用 CORB 方法。