Mu Kexin, Wang Dai, Dong Weiliang, Liu Qiang, Song Zhennuo, Xu Weijian, Yao Pingping, Chen Yin'an, Yang Bo, Li Cuihua, Tian Lei, Zhu Caizhen, Xu Jian
Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 100872, China.
Adv Mater. 2023 Nov;35(47):e2304686. doi: 10.1002/adma.202304686. Epub 2023 Oct 22.
Solid-state lithium-metal batteries constructed by in-situ solidification of cyclic ether are considered to be a critical strategy for the next generation of solid-state batteries with high energy density and safety. However, the poor thermal/electrochemical stability of linear polyethers and severe interfacial reactions limit its further development. Herein, in-situ ring-opening hybrid crosslinked polymerization is proposed for organic/inorganic hybrid polymer electrolyte (HCPE) with superior ionic conductivity of 2.22 × 10 S cm at 30 °C, ultrahigh Li transference number of 0.88, and wide electrochemical stability window of 5.2 V. These allow highly stable lithium stripping/plating cycling for over 1000 h at 1 mA cm , which also reveal a well-defined interfacial stabilization mechanism. Thus, HCPE endows assembled solid-state lithium-metal batteries with excellent long-cycle performance over 600 cycles at 2 C (25 °C) and superior capacity retention of 92.1%. More importantly, the proposed noncombustible HCPE opens up a new frontier to promote the practical application of high safety and high energy density solid-state batteries via in-situ solidification.
通过环状醚原位固化构建的固态锂金属电池被认为是下一代具有高能量密度和安全性的固态电池的关键策略。然而,线性聚醚较差的热/电化学稳定性以及严重的界面反应限制了其进一步发展。在此,提出了原位开环杂化交联聚合用于有机/无机杂化聚合物电解质(HCPE),其在30℃下具有2.22×10 S cm的优异离子电导率、0.88的超高锂迁移数以及5.2 V的宽电化学稳定窗口。这些特性使得在1 mA cm下能够进行超过1000小时的高度稳定的锂剥离/电镀循环,这也揭示了明确的界面稳定机制。因此,HCPE赋予组装的固态锂金属电池在2 C(25℃)下超过600次循环的优异长循环性能以及92.1%的优异容量保持率。更重要的是,所提出的不可燃HCPE通过原位固化为推动高安全性和高能量密度固态电池的实际应用开辟了新的前沿领域。