Bayer Vital GmbH, Leverkusen, Germany.
Bayer AG, Berlin, Germany.
J Med Internet Res. 2023 Aug 4;25:e47958. doi: 10.2196/47958.
Data transfer between electronic health records (EHRs) at the point of care and electronic data capture (EDC) systems for clinical research is still mainly carried out manually, which is error-prone as well as cost- and time-intensive. Automated digital transfer from EHRs to EDC systems (EHR2EDC) would enable more accurate and efficient data capture but has so far encountered technological barriers primarily related to data format and the technological environment: in Germany, health care data are collected at the point of care in a variety of often individualized practice management systems (PMSs), most of them not interoperable. Data quality for research purposes within EDC systems must meet the requirements of regulatory authorities for standardized submission of clinical trial data and safety reports.
We aimed to develop a model for automated data transfer as part of an observational study that allows data of sufficient quality to be captured at the point of care, extracted from various PMSs, and automatically transferred to electronic case report forms in EDC systems. This required addressing aspects of data security, as well as the lack of compatibility between EHR health care data and the data quality required in EDC systems for clinical research.
The SaniQ software platform (Qurasoft GmbH) is already used to extract and harmonize predefined variables from electronic medical records of different Compu Group Medical-hosted PMSs. From there, data are automatically transferred to the validated AlcedisTRIAL EDC system (Alcedis GmbH) for data collection and management. EHR2EDC synchronization occurs automatically overnight, and real-time updates can be initiated manually following each data entry in the EHR. The electronic case report form (eCRF) contains 13 forms with 274 variables. Of these, 5 forms with 185 variables contain 67 automatically transferable variables (67/274, 24% of all variables and 67/185, 36% of eligible variables).
This model for automated data transfer bridges the current gap between clinical practice data capture at the point of care and the data sets required by regulatory agencies; it also enables automated EHR2EDC data transfer in compliance with the General Data Protection Regulation (GDPR). It addresses feasibility, connectivity, and system compatibility of currently used PMSs in health care and clinical research and is therefore directly applicable.
This use case demonstrates that secure, consistent, and automated end-to-end data transmission from the treating physician to the regulatory authority is feasible. Automated data transmission can be expected to reduce effort and save resources and costs while ensuring high data quality. This may facilitate the conduct of studies for both study sites and sponsors, thereby accelerating the development of new drugs. Nevertheless, the industry-wide implementation of EHR2EDC requires policy decisions that set the framework for the use of research data based on routine PMS data.
在临床研究中,电子病历(EHR)和电子数据捕获(EDC)系统之间的数据传输仍然主要是手动完成的,这既容易出错,又耗费时间和成本。从 EHR 到 EDC 系统的自动数字化传输(EHR2EDC)将能够实现更准确和高效的数据捕获,但迄今为止,它遇到了主要与数据格式和技术环境相关的技术障碍:在德国,医疗保健数据是在各种通常是个性化的实践管理系统(PMS)中在护理点收集的,其中大多数系统不具有互操作性。为了满足监管机构对临床试验数据和安全报告标准化提交的要求,EDC 系统中的数据质量必须符合要求。
我们旨在开发一种自动化数据传输模型,作为一项观察性研究的一部分,该模型允许在护理点捕获足够质量的数据,从各种 PMS 中提取数据,并自动将数据传输到 EDC 系统中的电子病例报告表中。这需要解决数据安全方面的问题,以及 EHR 医疗保健数据与临床研究所需的 EDC 系统数据质量之间缺乏兼容性的问题。
SaniQ 软件平台(Qurasoft GmbH)已经用于从不同 Compu Group Medical 托管的 PMS 中的电子病历中提取和协调预定义变量。从那里,数据会自动传输到经过验证的 AlcedisTRIAL EDC 系统(Alcedis GmbH)进行数据收集和管理。EHR2EDC 同步会在夜间自动进行,并且可以在 EHR 中的每次数据输入后手动启动实时更新。电子病例报告表(eCRF)包含 13 个表单,共 274 个变量。其中,5 个表单有 185 个变量,包含 67 个可自动传输的变量(67/274,所有变量的 24%,合格变量的 67/185,36%)。
这种自动化数据传输模型弥补了临床实践数据在护理点捕获和监管机构所需数据集之间的当前差距;它还实现了符合通用数据保护条例(GDPR)的自动化 EHR2EDC 数据传输。它解决了当前在医疗保健和临床研究中使用的 PMS 的可行性、连接性和系统兼容性问题,因此可以直接应用。
这个用例表明,从治疗医生到监管机构的安全、一致和自动化的端到端数据传输是可行的。自动化数据传输可以预期将减少工作量并节省资源和成本,同时确保高质量的数据。这可能会促进研究站点和赞助商的研究,从而加速新药的开发。然而,EHR2EDC 的全面实施需要做出政策决策,为基于常规 PMS 数据的研究数据使用设定框架。