Suppr超能文献

利用人工智能进展和在线工具进行基于结构的变体分析。

Leveraging AI Advances and Online Tools for Structure-Based Variant Analysis.

机构信息

Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.

Computational Bioscience Research Center, KAUST, Thuwal, Saudi Arabia.

出版信息

Curr Protoc. 2023 Aug;3(8):e857. doi: 10.1002/cpz1.857.

Abstract

Understanding how a gene variant affects protein function is important in life science, as it helps explain traits or dysfunctions in organisms. In a clinical setting, this understanding makes it possible to improve and personalize patient care. Bioinformatic tools often only assign a pathogenicity score, rather than providing information about the molecular basis for phenotypes. Experimental testing can furnish this information, but this is slow and costly and requires expertise and equipment not available in a clinical setting. Conversely, mapping a gene variant onto the three-dimensional (3D) protein structure provides a fast molecular assessment free of charge. Before 2021, this type of analysis was severely limited by the availability of experimentally determined 3D protein structures. Advances in artificial intelligence algorithms now allow confident prediction of protein structural features from sequence alone. The aim of the protocols presented here is to enable non-experts to use databases and online tools to investigate the molecular effect of a genetic variant. The Basic Protocol relies only on the online resources AlphaFold, Protein Structure Database, and UniProt. Alternate Protocols document the usage of the Protein Data Bank, SWISS-MODEL, ColabFold, and PyMOL for structure-based variant analysis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: 3D Mapping based on UniProt and AlphaFold Alternate Protocol 1: Using experimental models from the PDB Alternate Protocol 2: Using information from homology modeling with SWISS-MODEL Alternate Protocol 3: Predicting 3D structures with ColabFold Alternate Protocol 4: Structure visualization and analysis with PyMOL.

摘要

了解基因变异如何影响蛋白质功能在生命科学中很重要,因为它有助于解释生物的特征或功能障碍。在临床环境中,这种理解使得改善和个性化患者护理成为可能。生物信息学工具通常仅分配致病性评分,而不提供有关表型分子基础的信息。实验测试可以提供这些信息,但这既缓慢又昂贵,并且需要临床环境中不可用的专业知识和设备。相反,将基因变异映射到三维(3D)蛋白质结构上可以免费提供快速的分子评估。在 2021 年之前,这种类型的分析受到实验确定的 3D 蛋白质结构可用性的严重限制。人工智能算法的进步现在允许仅从序列中自信地预测蛋白质结构特征。这里提出的方案旨在使非专家能够使用数据库和在线工具来研究遗传变异的分子效应。基本方案仅依赖于在线资源 AlphaFold、蛋白质结构数据库和 UniProt。替代方案记录了使用蛋白质数据库、SWISS-MODEL、ColabFold 和 PyMOL 进行基于结构的变异分析的用法。© 2023 作者。当前方案由 Wiley Periodicals LLC 出版。基本方案:基于 UniProt 和 AlphaFold 的 3D 映射替代方案 1:使用 PDB 中的实验模型替代方案 2:使用同源建模信息与 SWISS-MODEL 替代方案 3:使用 ColabFold 预测 3D 结构替代方案 4:使用 PyMOL 进行结构可视化和分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验